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Geometrical optics is used to calculate the radiation pattern from a source in orbit in a strong
gravitational field. No specific mechanism is postulated for the radiation itself, and only the field’s effect
on the radiation enters. (The model proposes a “black hole” at the galactic center.) Besides the Doppler
peaking expected in these orbits, we find that the gravitational lens effect can enhance the radiation
(regardless of how the radiation is produced). If the radiation arises from individual short events, the
gravitational lensing leads to a scatter in the observed intensity. Formulas are presented for the
probability a certain pulse will exceed the average by a given factor for a detector of finite sensitivity.
Enhancement as found here, if present in the galaxy, would lower the overall galactic mass loss implied

by Weber’s gravitational radiation measurements.

1. INTRODUCTION

Weber?! has recently reported experimental results indi-
cating a large flux of gravitational radiation, apparently
emanating from the galactic center. There immediately
arises an energy problem for the production of such ra-
diation, since estimates of the energy flux imply a mass
loss by the center of the galaxy of ~103M0/yr, as a con-
servative estimate, assuming an isotropic radiation pat-
tern from the center of the galaxy. Such a high mass
loss gives an implausibly short lifetime for the galaxy
and seems to exceed by about an order of magnitude the
rate of change of the galactic mass as deduced from
astronomical observations.?2

To reconcile the Weber results with the astronomical
ones, the builder of galactic models must find some
physical effect which reduces the over-all radiation rate
from the galactic center. In view of the nearness of

the position of the sun to the galactic equatorial plane
(with angular alignment ~1073 or even 10-4),0ne is led
to consider the possibility of a pattern of radiation
which is peaked in the disc. Two such possibilities come
immediately to mind. They are (a) the forward Doppler
peaking associated with radiation emitted from a mov-
ing source and (b) the focusing effect of strong gravita-
tional fields. Both these phenomena require very strong
gravitational fields: possibility (a) because strong fields
are required to get relativistic velocities from particles
moving in gravitational fields, and possibility (b) be-
cause, for large deflection angles (> 27),a very strong
field is needed.
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As a working hypothesis, then, we consider a model of
the galaxy with the galactic nucleus containing a black
hole or collapsar, presumably a spinning black hole
because of the ubiquity of angular momentum in galax-
ies. This spinning collapsar is assumed to have its
axis aligned with that of the galaxy with a high degree
of accuracy. Because of the tendency of contracting
spinning objects to form a disc structure, we postulate
that matter outside but near the collapsar also moves
in orbits lying in the same plane as that of the observ-
able disc of the galaxy. This matter may consist of
stars, along with gas and dust which are sinking toward
the center. We take as the mass of the collapsar,M, =
108M®,which is an upper bound on the mass allowed,
from observations of the galactic nucleus.3

We postulate that gravitational radiation is somehow
given off from objects in orbit near the collapsar. This
could be gravitational synchroton radiation as Misner?
has suggested. (This requires very relativistic orbits,
just as are required in electromagnetic radiation,5) Or,
we may suppose that the radiation originates in some
way which is local to the orbiting bodies. For instance,
stimulated collapse may occur for bodies near the col-
lapsar. Massive stars moving through the dust near the
center may go supernova because of the increase of
mass by accretion; inhomogeneities in the gas and dust
may allow sufficiently rapid accretion onto a neutron
star to cause it to collapse to a black hole;or tidal ef-
fects may trigger such an event, leading to a substantial
pulse of gravitational radiation. Alternately, small ob~
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jects falling into neutron stars can themselves emit
pulses of radiation.

We do not suggest that these production mechanisms
exhaust the possibilities. We also do not suggest that
the ones mentioned here are even particularly plausible.
We do not intend, in this paper,to go into the production
per se,of the radiation. We simple assume it is some-
how produced, and attempt to follow its fate subsequent
to its production. We feel confident that attempts will
be made, by others if not by us,to find acceptable models
of the galactic center,involving black holes to explain
the gravitational radiation flux. We note here some
effects which must be present in any such model.

Although we have assumed a central black hole which
would presumably be spinning, calculations based on

the Kerr metric® which describes such a situation are
still under way. In this paper we will present calcula-
tions based only on the Schwarzschild metric. In this
regard we refer to the calculations by Bardeen and
Cunningham? for the “extreme Kerr” case,which has a
(angular momentum per unit mass) equal to » (the total
mass of the system in geometrized units G = ¢ =1). In
the general Kerr metric a is a specifiable constant, with
the Schwarzschild metric having ¢ = 0, while the ex-
treme Kerr has a = /. Hence the work we present and
the work of Bardeen and Cunningham bracket a range of
behaviors. We hope to soon fill in this range of behavi-
ors with calculations for the Kerr metric with arbitrary
a. Nole added in proof: Since this paper was submitted
for publication, results similar to those presented here
for Schwarzschild were obtained for maximal Kerr by
J.K. Lawrence in a preprint.

2. GEOMETRICAL OPTICS

We have hypothesized emitters in high velocity orbits
around the central collapsed body. Because of the orbi~
tal velocity there will be peaking of gravitons emitted
forward in the direction of the motion. We will use geo-
metrical optics to discuss this peaking, which Misner4
describes in terms of wave optics. Drawing on experi-
ence in electrodynamics we expect that the peaking
found from geometrical optics will fairly well describe
the results found from the more accurate wave theory.
It should be noted that the Doppler shifting of radiation
emitted forward shortens its wavelength and improves
the geometrical optics approximation for such radiation.
We will not, of course, obtain accurate results for radi-
ation emitted with a wavelength typical of the scale of
curvature of the emitting system. Thus,if we consider
neutron stars as emitters we will obtain correct re-
sults only for distances greater than several tens of
kilometers from the emitter. Thus the geometrical
optics description will be accurate for the radiation
from » single neutron star which emits its radiation
near our postualted M, ~ 108M  collapsar, since the
radiation will have a wavelength typical of the source
(~M ) while the dimension of the background radius of
curvature is ~ 108M .

The geometrical optics approach gives the synchrotron-
like forward peaking,but is not a completely accurate
description of the wave phenomena. The wave analysis
is in principle accurate but usually proceeds by decom-
position into orthogonal polynomials;this means many
terms are needed to demonstrate the sharp peaking of
radiation we are concerned with here. In dealing with
the gravitational synchrotron radiation mechanisms
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suggested by Misner (where the fundamental frequency
is typical of M, ~ 108M_ rather than of M_), we cannot
get correct answers for the lowest modes; however, we
do obtain essentially accurate predictions for the higher
modes which do show the Doppler peaking.48

One of the characteristics of radiation ignored by the
geometrical optics approximation is the backscattering
of radiation, since it is based on an expression which
does not allow a superposition of waves traveling in
opposite directions. In this problem, except for the ex-
cluded low modes as noted above, the frequencies we
consider are sufficiently high so that backscattering is
essentially negligible. The “effective potential” in the
relevant wave equations has a small peak compared to
the energy eigenvalue (essentially w?) associated with
the wave. Hence we feel confident in applying these
results to a large class of possible phenomena.

Furthermore, some effects which are rather apparent in
one type of analysis may be overlooked in another. For
instance,the commonplace gravitational lens effect may
give large enhancements of intensities,a point which is
not obvious in the wave analysis but follows straight-
forwardly in the geometrical optics treatment.

We will go very sketchily into the details of the geo-
metrical optics formulation because it is well docu-
mented in the literature, and because its application,
rather than its derivation, is the point of this paper.®

It can be shown that k, = ¢,, (where ¢ is the phase of
the wave quantity) is tangent to null geodesic rays (i.e.,
gravitons and photons travel along null geodesics) and
that the polarization of the vector potential A, and of the
gravitational potential k,, are parallelly propagated
along these null geodesics.

We will ignore polarization in our discussion but will
use the fact that null geodesic rays describe photon
orbits, and will make use of the area intensity lawl0;
IdA = I(o)dA(O), (2.1)
where [ is the intensity (number of photons or gravitons
per square centimeter per second times av) and dA is
an elemental 2-area spanned by the radiation in the rest
frame in which the photons or gravitons are counted and
where it is assumed that the observations of the quanti-
ties on the two sides of the equation are made by obser-
vers who see the same spectrum for the radiation (i.e.,
no relative red shift). This equation generalizes the
7~2 law for point sources. To correct for the general
case where the two frames of measurement give dif-
ferent spectral shift,we insert the correction due to the
red shift: (v/v()2 on the right-hand side. The factor
appears as the square because the energy per graviton
is Doppler shifted, and the rate of detection of the gra-
vitons is also Doppler shifted. This correction can be
written in an invariant way by writing
(b, U¥)"21dA = (k,U¥ ) 2 oA (o) (2.2)
where U* and U* ,, are the 4-velocities of the two obser-
vers, k,U¥, are (tgxus the frequencies observed by the
two observers now I and I are the intensities measur-
ed by each, and we have removed the restriction to zero
redshift.

This heuristic argument assumes that dA and dA(,
measured by two observers in relative motion are equal.
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This is in fact a consequence of the result quoted in Eq
(2.2) from the exact derivation.

In our application, we take the quantities [, cm(o) to be
measured in the rest frame of the emitter, and we will
compute I as measured by an observer at infinity who is
at rest (i.e.,whose 4-velocity is parallel to the time-
like Killing vector).

The derivation thus proceeds by finding null rays which
connect the emitter,deep in the potential well, with the
observer at infinity. We then consider a small fan of
angles about this ray,defining dA ;. These rays can be
identified by their constants of motion. A complete set
of such constants are available in both the static spheri-
cally symmetric case,l! described by the Schwarzschild
metric, and in the stationary model (the Kerr metric)
which describes the field of a spinning black hole.l2

3. RAY OPTICS IN THE SCHWARZSCHILD METRIC
Although the Schwarzschild metric

ds?2 = —(1 — 2m/7)dt2 + (1 — 2m/r) ldv?2

+72(d82 + sin2%de2) (3.1)
can be obtained in the limit of vanishing angular mo-~
mentum from the Kerr solution,we shall present only
calculations based on this simpler metric. Computations
in the more difficult Kerr case are underway and will be
presented elsewhere.

In view of the comments made above we can compute
dA (g, in the Schwarzschild frame of Eq (3.1) rather than
going to the moving frame of the source.

The equations governing null geodesics in the Schwarzs-
child metric arel?

(dz/df)2 = 23 — 22 + B2, (3.2)
where

z = 2m/7, (3.3)
B2 is a constant

B = (2m/b), (3.4)

and b is the impact parameter of the orbit (which can be
unambiguously measured at infinity).

In writing this form we have set the angle ¢ = const;
this is possible in view of the spherical symmetry and
is a luxury not possible in the nonspherical Kerr solu-
tion. We also shall take the observer at z = 0 ( = ).
Notice that only one constant (8) enters, instead of the
two (energy and angular momentum) which might be
expected. All photons follow the same (null) paths if
they start with the same direction, regardless of their
energy (in the geometrical optics approximation). Hence,
only the ratio of energy to angular momentum (8) enters.
If we wish to keep track of the time, as well as the orbi-
tal position, we writel?

ar _ pz72 1 .
dz 1—2(z23—22+ p2)1/2

(3.5)

In order to use the area-intensity law, we compute the
cross section of a fan of gravitons, all passing through
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the source event, with a range in parameters AS and A¢.
To simplify the discussion, we temporarily put the
source at the pole 8 = 0.

We first compute the orthogonal distance between two
orbits which lie in the same plane ¢ = const. Now

arg, =g, g—% GAB (3.6)

is the length of the line joining two such rays along 6 =
const. However,this is in general not an orthogonal
connecting vector,but must be multiplied by cosi, where

tanx = K7 /K® 37
and

Ko = a/r,

(3.8)
Kr = aFV/2(1 — 2m/r)1/2

are the components of the momentum in an orthonormal
frame, with

F=p82/2m2 —72 + 2mr-3 (3.9)
and

a =FY2ar/ar, (3.10)
where A is an affine parameter along the ray. We find
the cross sectional length AD to be

AD

(3.11)

24

The width of the beam in the ¢ direction is given by
¥ sinfA¢; hence the cross sectional area is
dA__ 13z
(2m)2 22581,

ABAG sind. (3.12)

This is the area of the beam at a general field point;in
order to use the area intensity law,we compare this area
with the area spanned by the same beam,on an infinitesi-
mal 2-sphere of radius € centered on the emitter. As we
mentioned above, we need not go to the rest frame of the
emitter. Instead we can obtain the relevant infinitesimal
area (since it is an invariant) by working in an ortho-
normal frame aligned with the ¢, 6, ¢ directions in the
Schwarzschild frame. In this frame we put the event of
emission at the origin, and, since we have already as-
sumed this event is on the axis (6= 0), ¢ can be taken
over as a spherical angle in this frame. However,we
must introduce a new polar angle # in this frame.

Near the source,
tanf = K¢/K-
= {2(1 — 2)1/2/2mF1/2], (3.13)
where the subscript “e” means “at the point of emission.”

We thus compute [38/943), and obtain, for the infinitesi-
mal area on the sphere:

_dA (e \? [(1—2)z2 1
(gm)z'(2m> li 2p3 Zm[fl/z:LAquﬁ' (3.14)

Hence with Eqs. (2. 2) and (3.12) we find
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! :< kUH )2 L, 1_ [zz(l - z):]
kUL, ) (2m)2 g LoamF1/z |,

z2 43z > )

siné (86 o

Here L, is the luminosity of the source,equal to 4s/ (0)62
measured on the infinitesimal 2-sphere.

(3.15)

Formulas similar to this result have been obtained for
geometrical optics both in the Schwarzschild case and in
the generic case by Strauss.l3

In order to compute the intensity pattern observed at
infinity, one factors out of the z2 dependence and evalu-
ates the derivative at z = 0.

The solution to Eq.(3.15), and hence the calculation of
(02/3B1,), requires anintegration of an elliptic integral.l 1
In general this must be carried out on a computer. We
present here some computer generated plots of the radi-
ation pattern, averaged over one period of a circular or-
bit,for an emitter in such a circular orbit isotropically
in its rest frame.

These graphs plot observed intensity against the angle
that the line to the observer makes to the normal to the
orbital plane, Stable, very relativistic orbits do not
exist in Schwarzschild; the smallest stable test particle
orbit has radius » = 6m in the usual Schwarzschild co-
ordinates. We present in Fig.1 a radiation pattern for
the radiation intensity averaged over the emitter's or~
bit,when v = 6m ,against the angle o between the line to
the observer at infinity and the normal to the orbit.

Figure 2 plots a similar calculation for a radius v =
3.33m,an unstable circular orbit which has orbital velo-
city (measured in a local Lorentz frame) v = 0. 866,

We present this result even though the orbit is unstable
because we expect such an orbit to be an approximation
to one of the inward spiraling orbits of the Schwarzs-
child solution which has the same instantaneous radius.

Figures 1 and 2 do not show the radiation intensity
plotted for observers near the plane of the orbit. The
peaking for small angles is quite large and is due to the
gravitational lens effect. An analytic treatment suffices
for these cases. Depending on how close one assumes

¥=0

FIG.1. Polar plot of the intensity observed at infinity,averaged over
the orbit of the emitting source,for an emitter in a circular orbit » =
6m ,the smallest stable circular orbit in the Schwarzschild solution.
There is considerable radiation in a direction normal to the orbit. The
Doppler peaking is not large; the peaking in the equatorial plane here
is due principally to the lens effect.
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the observer is to the plane of the orbit, the lensing
effect can be quite large;as shown below, and, as can be
seen by considering Eq.(3.15) near the value 9 = 7, it
is proportional to 1/60, where 6 is the alignment angle.
There is not a true singularity, of course, for an emitter
of finite size and of finite luminosity.

By the use of asymptotic expressions (as found in the
standard texts)!4 for the elliptic integrals involved, it
is possible to show that,for 6,,, — 6, > 1,

(R, UM2 L [z22(1 ——z)] 2
= r4
(b UL)2 (2m)2 L2mp2F1/2],
512 (3 —2z,) ¢ Cobs)

M+Vs +2)2 ———,
sin(8,,5 — 0,)

(3.16)

where we have introduced general values 6, and 6,
for the coordinate of the emitter and observer. It is
found that this limiting form holds fairly well even for
fops — 0~ 7. Suppose we hold 6, fixed (say 6,,, = 7)
and consider a source with a constant luminosity sur-
face density with angular extent 9, centered on the
point ¢ = 0. Then if 6, is small, all the terms in (3. 16)
except sin(d,, . — 0,) can be approximated as constant,
and

*T9 B3

6 49, sinf, .o, .
Ice j;) m: j;) a6, = 0, (3.17)
if the sin(8,,, — ¢,) enhancement was not present, the
integral would yield %93. Hence we conclude, roughly
speaking,that the focusing gives an enhancement « -1,
where 0 is the alignment angle,but cut off at ~267}
where 0, is the angular diameter which the emitter sub-
tends, measured from the central hole.15 If we envisage
solar mass neutron stars as emitters,and a 108 solar
mass collapsar,then 6, may satisfy 6, ~ 10°8, and the
lens enhancement can be quite large.

If the orbit has sizeable Doppler peaking,the gravita-
tional lens effect will mean the predominant part of the
radiation comes from emission on the opposite side of
the central collapsar. This follows because the radi-

=0

FIG. 2. Polar plot of observed intensity at infinity,averaged over the
orbit, for an emitter in an unstable circular Schwarzschild orbit » =
10/3m . (Oribts of this radius can be stable in the Kerr solution.) The
Doppler effects leads to more suppression of the radiation normal to
the orbit, but the enhancement in the equatorial plane is principally due
to lensing. The proper intensity of the emitting source is the same in
Fig.2 as in Fig.1.



5 G. A. Campbell and R. A. Matzner: Peaking of galactic gravitational radiation 5

ation is emitted preferentially forward from tight re-
lativistic orbits (near » = 3m),but it is just such orbits
which are eventually deflected to the observer at infi-
nity. The principal reason for this is that no null orbit
which reaches infinity can have an apse of less than

3m, and the bulk of the radiation which escapes to infini-
ty is thus emitted forward (Fig. 3).

In such cases,the lensed terms dominate the expres-
sion for the intensity. If the observer does not lie in the
plane of the orbit,but some small angle 6,;, > 6, away
from it,the lens effect will give

I=K(o2 + 62, )1/2, (3.18)
where o is the angle along the emitter’s orbit measured
from the point on the opposite side of the orbit from the
observer and K is constant. In order to achieve a re-
duction in Weber's estimated energy flux, it is necessary
to average the observed flux over the orbital motion of
the emitter. We estimate

g + Vo? + B%in
8.5 ’

min

I, = Ko;11n< (3.19)
where ¢, is some limiting value of ¢. If the detector
sensitivity allows detection of all pulses, then we can
detect pulses emitted anywhere in the orbit so o, ~ 1
should be inserted and (3. 19) is only approximately va-
lid. If,on the other hand, the detector counts only the
strongest pulses, . is determined by

Inin = K(oZ + Bﬁin)—l/z’

(3.20)

where I ; is the minimum detectable pulse intensity,
and Eq (3. 19) becomes exact for small 0.

The peaking in the plane on this averaged basis is rather
soft. Nonetheless,if 0,;, = 1073, the gravitational lens
effect averaged over the orbit gives an enhancement of
order ~ 10 (if o, = 1). Such a modest reduction in the
total emitted flux may be sufficient to (just) bring the
energy loss down to that allowed by observations of
orbits of stars in the galaxy. This average lens effect
should more likely just be thought of as one mechanism
reducing the over-all power needed but not providing all
the enhancement needed to explain Weber's results.

When considering individual pulses (from individual
collapsing neutron stars or individual infalling chunks of
debris) whose duration is short compared to the orbital
period, very large enhancement may take place.

Suppose 6, is fixed. Then,if we consider equal
strength pulsed emissions,the probability that the in-
tensity of a single brief pulse exceeds the average of all
detectable pulses by a factor N is P = A(r/oc,where

g, +Vo2 + 92,
NoZl In (—"———9—°——-‘“—“‘>= (Ac? + 62, )-1/2 (3.21)

defines Ac. (We require Ao < 0,.)

min

If we write g, = n6,;, and assume « >3 (say), we have
the approximate formula correct for large n

P2 = N-2In"2(2n) — n~2 (3.22)

Table Iis a plot of P vs N for the three values n = 10,

102,103, computed from Egq. (3. 21) above (assuming
o, <1).
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)
< W,

FIG.3. The rays which are focused when the emitter is on the opposite
side of the collapsar from the observer are given off almost tangen-
tially to the orbit. This is also the direction which is preferentially
peaked by the Doppler effect. Hence,near the plane of the orbit,the
observed intensity is dominated by the lensed contributions.

TABLE I. The probability of observing a pulse larger than N

times the average pulse, for three values of n = ¥ /0 ;..

N P(%)

2.0 16.5

2.5 11.8

n =10 3.0 8.1
3.5 4.7

3.8 1.8

2 10.6

4 5.2

8 3.4

n =102 10 1.9
14 1.1

18 0.6

20 0.4
2 7.20
5 2.88

10 1.44

20 0.71
=103 40 0.35
60 0.22

80 0.15
100 0.10
120 0.07

140 0.02

If n = 100 (for instance 6, = 1073,0, = 10"1),we

find ~ 2% probability that a pulse will exceed the aver-
age by a factor 10. Notice that in this case the maxi-
mum possible intensity (assuming a standard source)
can exceed the average only by a factor 20. If the or-
bits are randomly oriented so that occasionally a much
smaller 0,,, holds, then, since ¢, will not change,
occasional giant pulses will result.

As is well known, 8, — 6, can be arbitrarily large
since null rays connecting source and emitter can be
found which wind around the deflector arbitrarily
many times. The possibility of multiple windings
means some additional enhancement because of the
lensing effect for “higher order ghosts,” but the in-
tensity in these ghosts is suppressed by ¢=27 ~ 0, 002
for each successive ghost, so that they are unimpor-
tant past the first or second unless the Doppler peak-
ing compensates.
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Scalar, electromagnetic, and gravitational test fields in the Schwarzschild background are examined with
the help of the general retarded solution of a single master wave equation. The solution for each
multipole is generated by a single arbitrary function of retarded time, the retarded multipole moment.
We impose only those restrictions on the time dependence of the multipole moment which are required
for physical regularity. We find physically well-behaved solutions which (i) do not satisfy the Penrose
peeling theorems at past null infinity and/or (ii) do not have well-defined Newman—-Penrose quantities.
Even when the NP quantities exist, they are not measurable; they represent an “average” multipole
moment over the infinite past, and their conservation is essentially trivial.

1. INTRODUCTION

Two general relativistic effects make it difficult to
study the exact propagation of radiation fields. First,
the curvature of the space-time manifold influences

the propagation of the radiation. Second, the stress—-
energy of the radiation acts to produce curvature in the
manifold. Acting in concert, these effects produce a
nonlinear theory, with an extreme dearth of known, exact
radiation solutions available for study.

In studying gravitational waves, it has frequently been
useful to use the “linearized theory,”in which the mani-
fold is taken to be flat, and the waves are sufficiently
weak that they do not destroy the flatness. Unfortunately,
certain interesting phenomena vanish in the linearized
case. For example, in general the propagation of radia-
tion is not entirely along null characteristics, as Kundt
and Newman! have shown for scalar and electromag-
netic test fields in the Schwarzschild metric, as Mc-
Lenaghan? has shown for scalar test fields in any non-
fiat background satisfying the vacuum Einstein equations,
and as Bonnor and Rotenberg3 have shown for asympto-
tically flat gravitational fields. The radiation backscatlers
off of nonuniformities in the curvature of the back-
ground space~time. For example, there is generally
backscatter left behind a burst of outgoing radiation.
Although the backscatter dies off in time at fixed radius,
the field at any point in space does not become exactly
static in a finite retarded time, Certain coefficients
associated with the asymptotic field near future null
infinity, the Newman~Penrose quantities (NPQ's)45 are
related to the backscatter from outgoing waves, In a

flat background these coefficients measure properties

of incoming waves and vanish identically when an out-
going-wave boundary condition is imposed. In curved
space, the Einstein-Maxwell equations appear to guaran-
tee that the NPQ's are conserved for dynamic fields;

but investigations of their physical significance have
been hampered by the absence of exact solutions with
nontrivial NPQ's.

Backscatter and nontrivial NPQ's do not require the full
nonlinear theory., They require that the background in-
fluence the radiation, but not vice versa. Thus they can
be studied in detail for fields which are linearized about
(i.e., weakly superimposed on) a curved background.

The work of Price® 7 on the behavior of integer—spin
test fields in the collapse of a slightly nonspherical star,
has furnished the key to this sort of an approach.

We have used Price's equations to analyze in detail the
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propagation of scalar, electromagnetic, and gravitational
test fields in the Schwarzschild background. The sourc-
es of the fields are assumed to remain bounded for all
time inside a radius R > 2M, where M is the gravitational
mass (units with ¢ = G = 1), We exhibit a single partial
differential equation which fully describes the radiative
part of the various test fields, and we solve this master
equation for the general retarded solution in the region
r > R. The solution is an expansion in powers of (2M/7)
which converges uniformly in this region at all retarded
times,

With the general solution, we are able to examine the
backscatter in some detail and to elucidate the nature
and physical significance of the NPQ's. The solution
also sheds considerable light on the “peeling theorems,”
which deal with the asymptotic radiation field at null
infinity.

Our results for the NPQ's have been reported previous-
1y8; in this paper they are amplified from a somewhat
different viewpoint. We find that the NPQ's do not always
exist (i.e.,the limits defining them do not always con-
verge). When they do exist, they are a certain average
of the value of the source's lowest radiatable multipole
moment over the infinite past. The presence of this
“average value” in the field is due to the superposition
of backscatter from the outgoing radiation of all pre-
vious epochs. The conservation of the NPQ's has a
simple interpretation: The contribution of the present
finite epoch to the average of the infinite past is vanish-
ingly small.

An important point is that the NPQ's, even when they
exist, are not operationally measurable. An observa-
tional measurement of finite accuracy and duration, and
at finite radius, can at best determine a quantity (we here
call it a measurable NPQ or MNPQ) which is an average
over the recent past (this is made precise in Sec. 6);

and there is no observational way to tell whether this
average agrees with the “primordial” NPQ or not,

Most previous theorems dealing with the asymptotic
behavior of the fields at null infinity and, in particular,
the peeling theorem of Penrose? based on a conformal
treatment of infinity,10 make certain mathematical
regularity assumptions. For instance, Penrose assumes
that the conformally transformed space—time manifold
is C%-differentiable everywhere (including future and
past null infinity), with a C3 metric. We ask, for re-
tarded test fields in the Schwarzschild background
whether all physically acceptable solutions of the field

Copyright © 1973 by the American Institute of Physics 7
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equations are consistent with the assumptions of the
Penrose theorem. The answer is no. Only solutions for
which the gravitational quadrupole moment is asymp-
totically static in the infinite past satisfy the theorem
for the gravitational field at past null infinity, Our
general retarded field ¢s consistent with the peeling
theorem at future null infinity. We show that all solu-
tions which are asymptotically regular in the Penrose
sense at past null infinity possess NPQ's at future null
infinity,

The mathematical foundation of this paper is the New-
man-Penrose spin coefficient formalism, as adapted
by Price? for test fields in the Schwarzschild metric.
This is reviewed briefly in Sec. 2, and the equations for
scalar, electromagnetic, and gravitational test fields
are given. Section 3 solves these equations as special
cases of a single “master” equation. Section 4 deals
with the solutions for the lowest radiatable moment;
Sec. 5 with the peeling theorems; and Sec. 6 the Newman~
Penrose quantities.

2. FORMAL PRELIMINARIES
The conventional form of the Schwarzschild metric is

ds? = (1 — 2M/7)dt?2 — (1 — 2M/7)2dr?

—r2(de + sin26dg?). (2.1)
Outgoing null geodesics are the surfaces of constant #,
0, ¢, where u is the retarded time

u=t—vr—2M Inlr/2M — 1) = t —r¥, (2.,2)

while for ingoing radial null geodesics,
v=t+y+2MInlr/2M — 1) =t + r* = const. (2.3)

The radius 7 is both the proper circumferential radius
governing the area of 2-spheres and an affine parameter
along the radial null geodesics., We will always impose
a boundary condition that there be no “free” incoming
waves, so it is convenient to use the retarded time « and
the radius 7 as coordinates. Then the metric is

ds? = {1 — 2M/v)du? + 2du dv — v2(d62 + sin26dp?).
(2.4)

The Newman—-Penrose spin coefficient formalism!! is a
powerful method for dealing with radiation in asymp-
totically flat space-times. It is based on a tetrad of
complex, null 4-vectors [¥, n#, m¥, m*# satisfying
l'n=—m-m*=1 (2.5)
with all other dot products zero. All tensors can be re-
duced to (in general) complex scalars by contraction
with members of this null tetrad. The “spin coefficients”
are scalars constructed from covariant derivatives of
the tetrad vectors. Newman—Penrose scalars have a
conformal weight ¢ and a spin weight p if under the
transformation

Te = xlv, ¢ =xlpe,  me =eltmi, (2.6)
the scalar T transforms as
T = AceitnT, 2.7
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In the Schwarzschild background a special choice for
the null tetrad which simplifies the spin coefficients is,
in u,7, 6, ¢ coordinates,

i =10,1,0,0],

nt = [1,—~ 3(1 — 2M/7),0,0],

m+ = (1/v2)[0,0,1/7,i/(r sins)].

(2.8)

Thus, I# is tangent to outgoing radial null geodesics and
n# is tangent to ingoing radial null geodesics.

The physically measurable tensor associated with the
electromagnetic field is the electromagnetic field ten- -
sor F,,;that associated with the free gravitational field
is the Weyl tensor C g, (in vacuum, identical to the
Riemann tensor R, ). The tetrad (2 8) is contracted
with F,, to obtain the NP scalars for a test electro-
magnetic field

@1 = Fpul“m",
P ——

— L TP
$_ = F,m"knv,

(2.9)

Fortuitously, the subscript denotes both the spin weight
and the conformal weight of the scalar. In terms of the
physical electric and magnetic field components measur-
ed by an observer at rest in the Schwarzschild metric
(2.1),

@, =212(1— 2M/7r)-1/2 [E®) — B + (B + B(©))
do=—3 (E() +iBW) (2.10)
&, =—23/2(1 — 2M/r)2/2[E®) + B(o) — (E(e) — B(O))],
The &, are completely equivalent to F ,—each contains
six independent real functions.

Similarly, there are five NP scalars containing ten
independent real functions which are equivalent in in-
formation content to the Weyl tensor:

U, =— Caayélamﬂnm 3, ¥y = = CuplonPlim?,
Ty =— Caayél"’fmam”né, V= Caayél‘”nBMm*é,
Vg = = Copypnom*Enym™s (2.11)

Again, the subscript gives the spin weight and the con-
formal weight. (The notation here follows Price? and
differs somewhat from most authors.) For gravitational
perturbations there is one additional complication: The
null tetrad to be used in (2. 11) is the NP special null
tetrad associated with the perturbed metric, not the
tetrad (2.8). The only ¥, which is nonzero in the un-
perturbed Schwarzschllcf background is ¥, = — M/r.3

The real parts of the &, and ¥, are associated with
even-parity fields, and ghe 1magmary parts are associat-
ed with odd-parity fields. The letter p is used to denote
the spin weight, since we reserve the letter s for the spin
of the field.

It is natural to take advantage of the spherical symmetry
of the background to expand the perturbations in spheri~
cal harmonics, However, the appropriate spherical
harmonics for the NP scalars with nonzero spin weight
are not ordinary scalar spherical harmonics, but

rather the spin—weight-p spherical harmonics.!2 These
harmonics are denoted by , Y (6, ¢) and involve deriva-
tives of the ordinary spherlcal harmonics, which have
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spin weight zero. The spin-weight index p can be in-
creased or decreased by certain differential operators.
The spin-weight-p spherical harmonics with < [p| are
undefined.

The derivation of the equations governing scalar, elec-
tromagnetic, and gravitational test fields in the
Schwarzschild background is described by Price.? Be-
fore he expands in spherical harmonics, Price “despins”
Newman~Penrose scalars with nonzero spin weight,
This differs from conventional practice.4.13 Therefore,
we expand a Newman~Penrose scalar of spin weight p
directly in spin-weight-p spherical harmonics. For
example,
o0
®,(,7,6,¢) = 2,
I=1pl
To avoid an unnecessarily complicated notation we sup-
press the I,m indices and write &, (u,7) as & (u,7).
Since the equations for the different multipoles separate,
this never causes any confusion.

®L,u,7),Y,(6,0). (2.12)

The differential operators in the spin-coeificient for-
malism which contain derivatives with respect to » and
¥ are

2 _2

D=—= (2.13a)
oxH 07
and
oxkt  du r ar

in the Schwarzschild background.

Of course, the spin-coefficient formalism is not needed
for a scalar test field , which satisfies

Cly = (— g)-l/z__a__((__ g)l/ngl/_a-u_/V_> =0, (2.14)
Jxk X

After expanding in ordinary scalar spherical harmonics,
the equation for the 2i-pole is

aa:g/u 7 u [6‘7) ] L(L;“L)‘” 0. 2.15)

The equations governing the 2/-pole of an electromag-
netic test field are

D[r2d,] =[31(1 + 1)]Y/2r&,, (2.16a)

Dlre_y] = [3ll + 1)]1/28,, (2. 16b)
Al(1 —2M/7)rd ]

~ [zl + 1)]1/2(1 — 2M/7)®,,  (2.16¢)

A[r2®,] = —[310 + 1)]1/2rd ;. (2.16d)

These combine to give decoupled second-order differen-
tial equations for each of the & fu, v):

D{(1 — 2M/7)-1r2A[(1 — 2M/7r)rd, ]}

+3l+ rdé, =0, (2.17a)
DA[r28,) + 311 + 1)8, =0, (2.17b)
Al72D(r&_ )] + 31U + 1)ré_; = 0. (2.17¢)
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If any one of Egs.(2.17) is solved, the corresponding
solutions for the other two &I>iJ are immediately obtained
from Eqs. (2. 16) as derivatives of the first &, Price
\(vorks )with (2. 17b); in Sec. 3 we solve Egs. (2. 17a) and
2.17c).

The equations for the gravitational test field are con-
siderably more complicated, since the perturbations
involve the very geometry through which the waves pro-
pagate. The spin coefficients p, A, y, v, 0, 7 and the me-
tric functions U, w appear in the equations for the

A p(”' 7). In the equations governing a particular 2¢-pole
these subsidiary quantities, like the \P ,are interpreted
as the coefficients of the appropriate spm weight spheri-
cal harmonics. The functions p, p, and U have spin
weight zero; v and w have spin weight + 1;v,2, and ¢
have spin weights — 1,— 2, and + 2, respectively. For
those quantities nonzero in the back ground we distin-
guish the perturbations by a subscript B,

The gravitational analogs of Eqs. (2. 16) are the perturb-
ed Bianchi identities:

Dra¥,] = [30 — 1)1 + 2))1/2r39,; (2. 18a)
D[r3\IloE] = (310 + 1)]1/2r29; — 3Mp g (2.18b)
Dr?u,] =3l + D]12ry, —3Mr-20%  (2.18c)
D[r¥ ,]= (30— 1)@ + 2)]1/2¢_; +3M-2x; (2.18d)

(1 —2M/7)2A[(1 — 2M/7)2r¥,]
=—[3(— 1) + 2)]1/2¥, — 3Mr-20;  (2.18e)

(1 —2M/r)1A[(1 — 2M /¥ )r2 ¥, ]
=—[a0 + D27+ 3Mr-tr +rle);  (2.180)

A[r3\1108] =—[3 + 1)]1/2r2¥
+3M{u, —7r1Ug); (2. 18g)

(1 —2m/7)A[(d — 2M/7)1rd¥ 4 ]
=—[30 = 1)U + 2)]2/293% , — 3Mrv.  (2.18h)

The other equations?-11 relating the metric perturba-
tions, the perturbations in the spin coefficients, and the
v » are sufficiently complicated that it does not seem
possible to combine them with Egs. (2. 18) to get a de-
coupled second-order differential equation for each of
the ¥,. Price does derive such an equation for Im\IIOE.

However, Price turns to the Regge—Wheeler formalism,14
as further developed by Zerilli,15 to treat the even-
parity gravitational perturbations.

Fortunately, decoupled equations do exist for ¥, and ¥_,.
The additional equations required are

D{ric) = r2¥, (2.19)
and

(1 —2M/v)A[(1 — 2M/7)-1r2)]

=[50 — 1) + 2)]1/2yy — 20 _,, (2.20)

Equations (2. 18a), (2. 18e), and (2. 19) combine to give

D{( —2M/v)2r4a[(1 — 2M/7)27 ¥, ]}

+ 30~ 1 +2) +3M/rpr3¥,= 0, (2. 21a)
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while Eqgs. (2. 18d), (2. 18h), and (2. 20) give

a{(t — 2M/7)-1r4D[r¥ )}

+{3( =D +2) +3M/7)(1 —2M/7) r3¥ , = 0.
(2. 21b)

The outgoing radiation field near future null infinity is
contained in ¥_, and the Newman~Penrose quantities
are in ¥,; so, for our purposes a complete solution for
all of the spin coefficients and the remianing ¥ » is not
necessary.

We shall see below that Egs. (2. 15),(2.17a), and (2. 17¢),
for scalar and electromagnetic test fields, are all special
cases of a single “master” equation, It is a rather re-
markable fact that Eqs. (2. 21a) and (2. 21b), which govern
the radiative behavior of gravitational test fields, are
also special cases of the same equation. In this sense
the Einstein field equations, with their particular coupling
of the perturbations to the background geometry, repre-
sent the simplest spin-2 field equations in the curved
Schwarzschild background. The solutions to the master
equation governing all the fields depend explicitly on s
(the spin of the perturbing field) only in a very minimal
way.

3. THE GENERAL RETARDED SOLUTION

We consider the equation

2 L 2As+p+1) W

2 oudr r ou

22y (2s + 2oy UFTs+TDU— s)w
ST T+ 2

AM\32 | (Bs+1—play | s(s —p)
+(_7—>(3—ﬂ+ r Era fz'p \!1).—_0.

3.1)

The parameter s takes on the values @, 1, 0r 2 corres-
ponding to the spin of the test field. The parameter p
takes on the values :+ s corresponding to the two extreme
possible spin weights. [Eq.(3.1) can rot be used for
“nonradiative” spin-weight components —s +1<p <

s — 1.] With s = 0,p = 0,y (u,7) is the coefficient of

Y! m(o, ¢) in the spherical harmonic expansion of a scalar
test field, and Eq.(3.1) is identical to the field equation
(2.15), With s = 1,p = + 1,y represents the coefficient
of ,,Y! in the spin weight + 1 part of the electromag~
netic field tensor; (3. 1) then is identical to (2. 17a) and
{(2.17¢)., With s = 2,p = £ 2,y represents the coefficient
of ,,¥! in the spin weight + 2 part of the Weyl tensor,
and (3. 1) becomes identical to (2.21a) and (2.21b). In
this section we obtain a general retarded solution to this
master equation.

The solution is in the form of an expansion in powers of
the gravitational mass M. We prove that the expansion
converges for retarded fields at all » > R > 2M, where
R is a radius bounding both the source of the background
Schwarzschild metric (either a star or a black hole) and
the source of the test field at all times to the past.

The general retarded solution to Eq. (3. 1) must be regu-~
lar at infinity in the minimal sense that v — 0 as r — o,
and must be entirely generated by sources in the region
v < R. It will contain one arbitrary function of the re-
tarded time u.

First consider static solutions. Since »-1 = 0 is a regu-
lar singular point of the ordinary differential equation
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for y(r), the static solution regular at infinity can be
written as the series

IP(T) =A 2(p-s)2 ,,-(z+s+1)[1 +i a, (?%’1) k:l (3.2)
k=1
with
_HRU+p+R) 20+ 1)
HE TR QAP @A ITET (3.3)

The series converges for all » > 2M. The coefficient
A is identified as the static multipole moment.

Now consider solutions to Eq. (3. 1) which are static for
all u = ug, but dynamic for u > u,. These solutions arere-
tarded, since no incoming waves are present near past
null infinity. At u = u,,  can be expanded in powers of
71 at fixed u, and this analytic structure will persist

for a finite retarded time after u = u in the region

r¥> R. Let

Y =25 flurn

and substitute into Eq.(3.1). The f, must satisfy the
hierarchy of equations.

(3.4)

2m—p—s—1)f,'=(U+s+2—nn+l-s—1)f,,
+ Q@M)n +p—s—2)n—s—2)f, 5. (3.5)

It is consistent with Eq.(3.5) that all f, with n<p + s +
1 are identically zero. Furthermore, these f, must be
zero, or some f, with » =< 0 will be nonzero, and Ylu, 7)
will not go to zero as » — ® at u > u,. This is the peel~
ing property at future null infinity.

Split the sum (3, 4) into two parts:

l+s+l
W= 2 ) S lur= (3.6)
and nepre
‘Pu = VZZ; 0 fn (u)y—n . (3. 7)

We shall see that the f, in y; are linear combinations of
a single function of retarded time, the retarded multi-
pole moment A (), and its first (I —p) derivatives. The
f, in y;; cannot be represented in this way consis-

tent with Eqgs. (3, 5) and the static initial conditions.

Define the multipole moment Afx) from the part of the
field withp = s. Let

l-5 ]
fosil) = 9—{{,‘0 [72s+ ylu,r)] = E_Tg_l%i)_ A C-s)y), .8
(Superscripts in parentheses denote the number of de-
rivatives to be taken.) In the first ( — s) successive
integrations of Egs. (3. 5), with p = s, absorb the con-
stants of integration into A(x). Then f,, ., = A when
Al(u) is constant, consistent with Eq. (3. 2).

The coefficient of »-1, f, (u), in the Y/, 7) withp = — s
is related to f, ., ;(u) in the Y(u, ) with p = s by the
flat-space versions of Egs, (2. 16c¢) and (2. 16d) coupling
the @, (s = 1) and Eqs. (2. 18e)-(2. 18h) coupling the ¥,
{s = 2). The terms in these equations from the curva-
ture of the background are of order »-1; at least as long
as the infinite sum in Y, converges, one has

LA 0lr-1y),

37 (3.9)
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just as for the flat-space retarded solutions. Therefore,
the analog of Eq. (3.8) whenp =— s is

(1 —s)!
TFs)1 f2sn

:m(_l(%l%A(m)(u), (3.10)

fr),. =2 (2s)'p=s

Starting with either Eq. (3. 8) or Eq, (3. 10), successive
integrations of Egs. (3. 5) give the f, () in ¢ ;{u, 7) in the
form

[ #/2)
fP+s+1+k: Z ak.m(ZM)mA(l—p—le). (3-11)
m=0
The upper limit to the sum [%/2] is
k/2, k even
k/2] = . (3.12
(/2] {(k —1)/2, kodd )

All the coefficients ¢, , can easily be evaluated for any
particular values of s,/,and p [see Eq. (4. 19) and follow-
ing, for an example]; the coefficients which survive when
M =0are

(I—p)
RUL—p —k)!
(3.13)
When the field is static, the only nonzero f, in ¢ is

a0 = 21-k9-(p+s)2 0 +p t+ k)!
’ (20!

fl+s+1 = z(p—S)/zA' (3.14)
Because the coefficient of f, ; in Eq. (3. 5) vanishes when
n =1+ s + 2, the constant of integration in f,, . , cannot
be absorbed in [“A(u')du’ as, for instance, the constant
of integration in f,, ;,, was absorbed in A(x). Instead,

it must be kept explicitly:

1 +p) [ C-p-1)2] A
= m+ m
fl+s+2 =C+ 2(1 ~p +1 0 al—p-l.m(zM) A .
(3.15)
From the static initial condition on f,, . ,,
~Lopae (211
C = 52002 777 (2M)A ). (3.16)

The fact that the constant of integration contains A (u,)
means that f,, ;) for u > uy depends on the past
history of the time dependence of A{u), as well as on the
instantaneous values of A(u) and its derivatives. The
backscatter of the outgoing radiation field ¥ (u,7) is en-
tirely contained in zpn(u, 7). It was the failure to allow
for the constant of integration {3.16) that led to the in-
correct treatment of the backscatter in preprint versions
of papers by Price? and Thornel€ on the decay of radia-
table multipoles during gravitational collapse,

The integration constant in f,, ., , generates terms in
the f, with n> [ + s + 2 which grow with time:

k—1! (1—p)!
freeero ™~ (1428 2k) (l-(—p{—)kﬂ

x BLEEp (- QM)A oA, (3.17)

While these terms may be partially cancelled by terms
coming from successive integrals of A (u), typically
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fl+s+k+1 U—ug
~ —
-fl+s+k 2

in the limit & >> I when # — u, > 2M, so the expansion
(3.7 of ¥ ; in powers of »~1 will diverge once

(3.18)

u—uy> 2r, (3.19)
Thus, the power series expansion of the form (3. 4) is not
a satisfactory solution of Eq.(3.1).3

To obtain a solution which converges uniformly at all
future times, we keep ¥, in the form (3. 6), but repre~
sent ¥, (u,7) by

0 k
Y gy ) = r-Gra D3 ak@rﬂ) 2,00, 7). (3. 20)
k=1

This new expansion is an expansion in powers of the
gravitational mass M, instead of powers of »-1, The co-
efficients a, are the coefficients (3. 3) in the static solu-
tion. For the purposes of the new expansion ¢ (x,7) is
considered zeroth order in M, even though M appears in
the f, (), n=< 1+ s + 1, through Eq. (3. 11).

Substitute the expression (3. 20) into Eq. (3. 1), along
with y{«, 7) in the form (3. 6), and require that the co-
efficent of each explicit power of M vanish. The result
is a hierarchy of partial differential equations for the
gy, 7): When k> 1,

22g, 2k +1-—plog, 3%,

2
oudr r du ar2
ok + 1) 08, ke +20+1)
r or r2

k(e + 21 + 1) (a2gk_1 (28 + 21 +p —1) 35,

TTEFDEFIFPN a2 r or
+ e +1+
LR DESITD) gH); 3.21)
»rz
and whenk =1,
5 92¢, 20l—p+1) g, 32,
duor ¥ ou ar?
2(1 +1) 3g, (21 +2)
+— = T &1
2 ar v
2] + 2 21(1 +
='“£‘—'—‘)fz 1(")“M fiast (3 9)
r? *sr I+p+1 7»

The right-hand side of Eq. (3. 22) comes from using Egs.
(3.5) on the f, in Y.

Equations (3. 21) are scale invariant under the transfor-
mation u - Ku,r — Kr., Equation (3. 22) is not generally
scale invariant; but it is if the multipole moment A (u)

is constant, which implies that f,, ., is constant and
Jf1+s 18 zero. In this special case the entire hierarchy
of equations for the g, is invariant under the scale trans-
formation. The scale invariance suggests that a solu-
tion to the hierarchy exists which depends on only one
independent variable, a scale invariant combination of

u and 7. Since the equations are also invariant under a
translation in » when A{x) is constant, the most general
form for the similarity variable is

y=(u—uy)/2r. (3.23)
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The similarity solutions will be superimposed to give
the general retarded solution,

The ansatz g,(u, ) = gfy) reduces the partial differen-
tial equations (3.21) and (3. 22) to the ordinary differen-
tial equations

d%g,

e te+l—p+1+20k +1+1y]

y1+y)

dg,
d

+ 21+ 2
+ ki + 2] + l)gk = k(k ! 1) (zd Er-1

& +INE+1+p) dy?

d
+ (22 +2+p + 1)y—§’k—1+ (& + D)k +l+p)gk_l),
y

(3.24)
When k = 1 in Eq. (3. 24) the g, appearing on the right-
hand side is understood to be f,, ., ;,a constant.

The solution of Eqgs. (3. 24) can be reduced to quadratures
by standard methods. A particular solution to the
hierarchy is the solution, for which

gk(y) = f), 601 = 2G-s)24 (3.25)
for all 2 = 1. Any dynamic solution to the hierarchy is
a particular solution plus a homogeneous solution. To
join a dynamic solution to a static solution at u = #, it
is necessary to take u; = u,, or

y = {u—uy)/2r, (3.26)
since only at y = 0 is y independent of 7 at fixed u.
Therefore, the homogeneous solutions for constructing
initially static dynamic solutions must be regular at
y =0.

Only one of the two independent homogeneous solutions
to the kth equation (3. 24) is regular at y = 0. Nor-
malized to be one at y = 0, it is

ey )
e R T 2=
@—=p T R) { —p + m) m
T prEEmN G-pn Y™ 820

A homogeneous solution to the hierarchy is composed
of inhomogeneous solutions to Eq. (3. 24) for allk > n,
generated by the homogeneous solution (3, 27) for & = n.
Let the functions H, ,(y) be the g,(y) generated by &, (y):

g2ly) =4, (y). (3.28)
For k< m;
H, ,=0. (3.29)

The nonzero H, , are all normalized to be one at y = 0.
Thus

H, () =h,(y) (3.30)
and for & > n

H, (5 =hk(y)(1 + foy dyyy,- el (1 + y ) Geiepr D
x hk(yl)'zfoyl dysys Fri-p(l + y2)k+l_ph’k(y2)sk(y2)>'(3' 31)

The function S, is the right-hand side of the 2th equation
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(3.24),with g, , =H, , ;.
Some important properties of the nonzero H, , are
H, ,=1—0(ytn+1) (3.32)

in the limit y < 1, while when y > 1

o k! (e 20+ 1) (k+1—mn)
"E e (B FUA+1 ) (B + 1)
(B+1+p—m (I +m)) U—p+ml U +p + n)
(& +1+p) in1 (I —phN (L +ph
. (2 (21 + 1) (3. 33)

@1+m! @l +n+ 1)!y
The nonzero H, ,decreases monotonically from one at
y = 0 to zero in the limit y — .

The leading term in a homogeneous solution H, , (y) can
be interpreted as an ingoing wave in fiat space. That is,

vJ/ :hn(y) «y—(l+s+1+n) (3. 34)

solves Eq. (3. 1) with M = 0 and can be put in the form
i+p

v :i 9-Gepy2(— 2)q BL=q!
¢=0 (21)1

X _.—(l_.iP_)!.__B(q)(v)yv(l +s+1—q).
gl +p — gl

The advanced multipole moment B(v), as a function of
the flat-space advanced time

{3.35)

o CTHT (3. 36)
1s
Bly) = 2(s+py2 21 (I~p + nl

(2L +n) (1 —p)

A similarity solution solves the following problem: The
field is static for all u < wuy; at 4 = u, the retarded mul-
tipole moment changes by a step function to a new con-
stant value for all u > u,. With the help of the above
homogeneous solutions it is possible to fit the initial
conditions on the g,( y) at u infinitesimally greater than
#y. The instantaneous changes in the g, due to the change
in A(u) are found from Eqs. (3.5).

22 (v —ug)=. (3.37)

An arbitrary continuous variation of A () can be approxi-
mated arbitrarily closely by a superposition of step-
function changes. Since the test~field equations are linear,
the general retarded solution to Eq, (3. 1) can be repre-
sented as a continuous superposition of similarity solu-
tions. The constant u, in the similarity variable y be-
comes a dummy integration variable. By letting the

range of integration extend to u, = — o, we include cases
in which the field was never static at any time in the

past.

Our general retarded solution for gk(u,r) is

U d +5+
gk(uﬂ’) :fz+s+1(u) - f_oo du0[<—£~£

Il +p)
T G—p+DU+p+ 1)

Wi +p)
((—p+1+p+1)

dug

fl+s(u0)>H1, k(y)

T s(uO)H2,k(y):I . (3.38)
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That this does indeed solve Egs. (3. 21) and (3. 22) can
easily be checked by substitution, The integral in Eq.
(8. 38) is the backscatter;when k = 1 it is a superposi-
tion of purely ingoing waves generated by previous
changes in the multipole moment.

While Eq. (3. 38) is best for the physical interpretation
of g,{u, 7), a different form of the solution is best for
proving convergence of the integrals and of the series
(3.20). Integrate by parts in Eq. (3. 38) and define

_ 17 +p) “
F+s( )= +s( )d
brs (z—p+1)(z+p+1)ffl Holto
_ Wi +p)
I—p+DU+p +1)
[C-p-1)/2)
X 4_‘)0 a,_P_Lm(2M)’"A‘m)(u). (3. 39)

When 7 is finite, so that u, — — « implies y — o, the re-
sult is

gk(u; ’V) = Fl”(u)ékl
- -217 f_: duo{[fl+8+1(u0) - Fl+s(u0)]H1,k,(y)
+ Fl+s(uO)H2,k,(y)}' (3.40)

The primes denote derivatives with respect to y, and §,,
is the Kronecker delta,

In going from Eq. (3. 38) to Eq. (3. 40) we have implicitly
assumed that f,, ., 1) and F,, ((u) are bounded in the
limit % — — v, We now impose the slightly stronger
condition that f,, ., () and F,, ((#,) be bounded for all
ug < u, if the field is being evaluated at the retarded
time u, Both f,, . ,(u;) and F,, (u,) contain at most

(I —p) derivatives of Aluy), so the condition follows if
¥1lug, 7) was bounded at all times to the past.

Since the H, , decrease monotonically from one at y =0
to zero at y = w, the H, ,'(y) in Eq. (3. 40) are negative
or zero over the whole range of integration, If f,, ., {u,)

and F,, (u,) satisfy
[frese1lto)| = K4, (3.41)
|F,, o)l = K, (3.42)
for all — o < uy < u, then
— Ky == o [ dug e et ()
= —%1- f_: dugl | /(v) =K,, (3.43)
—Kys o [ dugF, o, () = Ky, (3.44)
S0
lg lu,7) | = Ky +2K,. (3. 45)

Both K, and K, are the same order as the bound on
|A(ug) [, since the time scale over which A{u) changes
is typically greater than or equal to (2M).

The integrals in Eq. (3. 38) will not necessarily converge
to any definite value at » = o, where y = 0 for all u.
Since » = « is not in the physical space—~time, there is
not physical requirement that the g,(u, ©) have well-
defined values.

Derivatives of the g, with respect to « and » do not
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affect the convergence of the integrals, since

0

1y . 1.
i) = 5 Hy y(9) ~ oy (8. 46)
and
0 , 1
3y Hunl¥) = — %Hn,k (3) ~ =y, (3.47)

y > 1, Equation (3. 9) is valid for the general solution,
not only initially static solutions.

From Eq. (3. 45), the absolute values of the g,lu,7) are
bounded uniformly in k. We conclude that the infinite
sum in Eq. (3. 20) for ¥, (u,7) is absoutely convergent
at all » > R, for any R > 2M, and that
Vi lu, ) = 0(r-(s2)), (3.48)
The only restrictions on the time dependence of the re-
tarded multipole moment A(x) are boundedness condi-~
tions on Afx) and its first [( — p)/2] derivatives. These
are physically necessary conditions if the field is to have
finite energy density at all times to the past. Our gener-
al retarded solution constructed from Eqgs. (3. 6) and (3, 20),
with the f, (4} given by Eq. (3. 11) and the g,(u, 7) given
by Eq. (3.38) or (3. 40), almost certainly contains all
physically nonsingular retarded solutions to Eq.(3.1).

Some results of this section are not new. The solutions
of Couch ef al.17.18 for the backscatter of electromag-
netic and gravitational radiation first order in M are
essentially the same as Eq. (3.40), with £ = 1,

4. THE LOWEST RADIATABLE MULTIPOLES

The physically most important multipoles are the elec-
tromagnetic dipole and the gravitational quadrupole.
These typically dominate in electromagnetic and gra-
vitational radiation processes, respectively. They are
the lowest multipoles which can radiate, i.e., contribute
r-1 terms in the respective field tensors at future null
infinity. Furthermore, these multipoles contain the
apparently conserved Newman-Penrose quantities, In
this section we write out explicitly the general retarded
solutions for &,, (electromagnetic) and ¥,, (gravitation-
al) through order (2M/7) in all cases and through order
(2M/7)? for ¥_,. Higher-order terms do not contribute
to the NPQ's.

A. The electromagnetic dipole field
In view of Eq. (3. 8) the retarded electromagnetic dipole
moment E(u) is defined by

E(u) = lim (730 (u,7)]

K and- ]

4.1)
in the dipole part of the field. We have shown in Sec. 3
that this limit always exists for retarded fields.

In the spin-weight-one part of the dipole field the func-
tion z,(y) is

hy(y) =1 +y +352)/(1 +y)3, “4.2)
so that QE 14y 432
(u,r) = E@) — * du,te LT Y T syl (4. 3a)
81\, f—oo Oduo (1+y)3 3
with y = (@ —ugy)/2r, or
4 1 2
glu,7) = ‘go dy Elug) 2tgy sy (4. 3b)

(1 +y)4
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with
Ug=u *27’3). (4.4)
The result for &; (u,7) is
2+ 5y + 42
& (u,7) = 73E@) + 2@2Mw4 [~ dyEu,) ———
) (4, 7) () + 22M) fo yE () Ty
+ o[(2M/7)2]. (4.5)

Alternatively, we could have begun with the spin-weight-
minus-one part of the dipole field. Here Eq. (3. 10) gives

fitw) = E@ @), (4.6)
Applying Eq. (3. 5) twice,

falu) = E (Dy) 4.7
and

f3) = f,, @) = 2E@). 4.8)
The function 2 ,(y) is simply

By(y) =1 +y)1, 4.9)
s0
1 1dE 1
g1lu,7) = 5 Ew) -—f_ dug 5 qug T+ (4.10)
=5 [T B + y)2. (a.11)

In Eq. (4.11), as in Eq. (4. 3b), u, is given by Eq. (4. 4).
Putting everything together, we obtain

&y (u,7) = r1ERNy) + »2ED(y) + 373E(u)
+ %(ZM)V""wa dyE (o)1 + y)-2

+ 0[(2M/7)2]. 4.12)

For a given time dependence of the dipole moment E(u),
the solution (4.12) for & ; must be consistent with the

solution (4. 5) for &,. Th1s is easily checked by apply-
ing Egs.{2.16a) and (2. 16b) to the solution (4. 12). First,

<I>0 - 32’ [’r@ ]

=—r2E)y) — r-3Ew)

— (2M)’V 4_[0 dyE(uo) m

— of[(2Mm/7)2). (4.13)
Then

8, =7 1128, 4.14)

gives Eq. (4.5).

B. The gravitational quadrupole field
The gravitational quadrupole moment G () is also very
simply defined by Eq. (3. 8):

Gl) = lLim [r3,(u, 7)]. {4.15)

The limit is again guaranteed to exist for retarded
fields.

The analogs of Eqgs. (4. 2), (4. 3a), (4. 3b), and (4. 5) for

J. Math. Phys., Vol. 14, No. 1, January 1973

the spin-weight-two part of the gravitational quadrupole
field are

1+ 2y + 292 + 93 + 494

h =
1(37) (1 + y)5 (4. 16)
0 2 3 4 1.4
gl(u,'r) = G(u) —_ f duo_fi_gl + 2}’ —:12)’ ';‘sy + 5V
-0 u +
o Y (4.17a)
) 3+ 4y + 392 4 23 4 Ly4
1+ y)G
‘I’Z(M’ r) =r5Gu)
3+ 4y + 3y2 + §y3 + 1y
+ 5@M)r- [ dyG
Ry Gl T+ e
+ 0[(2M/7)2]. . 18)

The spin-weight-minus-two part of the gravitational
quadrupole field shows how the effects of the background
curvature can enter y,(«,7). [See discussion following
Eq. (3. 10}] Start with

@) =16 4), (4.19)
The successive integrations of Eq. (3. 5) give

folu) = 3G G w), {4.20)

f2) = 36 @) + H2M)G 3w), (4.21)

falw) = 36 V) + $2M)G 2 )u), (4.22)

fs) = fi, @) = iGl) — 5;@M)2G 2)u).  (4.23)

Similar curvature terms appear in ¥, when / = 4 and in
®, when [ = 3. Note that the £, («), n< 5, cannot be ex-
pressed as a finite sum over derivatives of f5(u). For
this reason, the quadrupole moment should not be defined
as the coefficient of -5 in ¥_,(u, 7); rather, Eq. (4. 15)—
which leads to Eq. (4. 19)—is the better definition.

In ¥ {u,7) for ¥_, the function k(y) is again simple,

htly) = (1 + )L, (4. 24)

This makKes it feasible to go on and solve for H 5( ),
which appears in the solution for g, (u, 7). The result
of applying Eq. (3. 31) is

Hyo(y) = (1 +9)2{l + [y + In(l +3) + 3

ki
— 3yt 5y 2 =gy gyt 46y

~ (5 + 69)y-¢ In(1 + y)]}. (4.25)

We finally have for ¥_,

ol 7) = 271G 44) + 426 (3 + 3-3[G(2) + 3(2M)G (3]
4G + H2M)G )] + 3r-5[G ~— ILG(ZM)ZG(Z)]
Lr-52M/7) f dy[Glug) — (2M)2<;<2)(u0)](1 +y)2
iq -5 2M/r)2f dy[Glug) — ‘(2M)ZG(2)(”0)][‘H1,'2(3?)]

+ 0[(2M/'r)3] (4. 26)

The coefficient of f,, . vanishes in Egs. (3. 38)-(3. 40)
when ] = —p = s, which means that the Newman-Penrose
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constants appear in a simple way in & _; and ¥_, (see
Sec. 6).

5. PEELING PROPERTIES

There are three distinct types of infinities in an asymp-
totically flat space-time, corresponding to three possible
choices of time coordinate. If » — o« with the static time
coordinate ¢ in the Schwarzschild metric held constant,
the limit is called spacelike infinity. The limit v —
at constant retarded time « is future null infinity, while
the limit » — « at constant advanced time v [see Eq. (2. 3)]
is past null infinity, Penrose®:10 has pioneered the study
of the conformal structure of infinity, He transforms
coordinates to bring » = © in an asymptotically flat
space-time to finite coordinate values and then removes
the induced singularity in the metric by a conformal
transformation. The original open, noncompact manifold
M is converted to a manifold M which contains future
and past null infinity as regular null hypersurfaces (5
and &, respectively). Spacelike infinity is represented
by a point Ij, which is generally a singular point of M.
A spin-~s zero-rest-mass field in the physical open,
noncompact manifold M can be described by a totally
symmetric spinor ¢ ,...., with 2s indices. The corres-
ponding conformally transformed spinor
Gaeg =805, (5.1)
satisfies the spin-s zero-rest-mass field equation in
M. If ¢ 4... is continuous at - and 9+, the field is called
asymptotically regular. Penrose? shows that an asymp-
totically regular field has the following peeling behavior:

(rsspelyy) (5.2)
has a limit at future null infinity, and
rs-p+1y,) (5.3)

has a limit of past null infinity, where y,, is the spin-
weight-p part of the field tensor. For an electromagnetic
field ¥, = ¢, and for a gravitational field y, = ¥,.

Penrose then prove asymptotic regularity of the gravi-
tational field on the assumption that the geometry of
the spacetime is sufficiently smooth at null infinity,
specifically that the manifold M is C%-differentiable
with a €3 metric and that the conformal factor Q is C3
on M. (This step is close to a tautology, since the geo-
metry is the gravitational field.) With the same regular-
ity of the geometry an electromagnetic field is not re-
quired to be asymptotically regular—expressions (5. 2)
and (5. 3) need only be bounded at future and past null
infinity, respectively.

On the other hand, Couch and Torrencel® have shown
that a very much weaker type of peeling behavior, in
which rs+1ll/p need not be bounded for p = 0 at future
null infinity and for p < 0 at past null infinity, is consis~
tent with asymptotic flatness.

How much regularity at future or past null infinity can
be expected purely on the basis of a certain set of assump-
tions about the physical nature of the source? We begin
an exploration of this question using our general re-
tarded test field solutions.

The only restriction we impose in deriving the solutions
are the absence of incoming radiation at past null infin-
ity, the boundedness of the retarded multipole moment
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at all times to the past, and the validity of the test field
approximation,

The first two restrictions correspond to the physical
condition that the sources of the test fields be bounded
within a compact region for all times to the past. If the
source is cortained within a radius R > 2M, a rough
estimate of the maximum possible gravitational multi-
pole moment is MR!, Charge separation for electro-
magnetic (or possibly scalar) sources increases the
limit to the order of R!* (charges measured in Gaussian
units), at which point the test field approximation breaks
down,

The validity of the test field approximation requires that
the nonlinear contributions of the test fields in the exact
Einstein equations do not significantly modify the back-
ground Schwarzschild metric. The first (I + s) deriva-
tives of A(x) must be bounded, so that the ¥, (x,7) will
be bounded. Also,the energy radiated over all times

to the past must be small compared with the gravitation-
al mass M. An explicit positive-definite20 expression
for the energy radiated from a particular 2¢-pole is

We claim that no further constraints on A(u) are physi-
cally necessary.

At future null infinity our general retarded solutions for
scalar, eleciromagnetic, and gravitational fields are all
asymptotically regular in the Penrose sense. Moreover,
the coefficients of - (s++1) in the ¥, are related to each
other and (by definition) to A(x) in the same way as in

a flat background:

lim 754 fu,7) = (— 1)s—p<2s—p___2_(l o)t I s) S”)l/z
(1—ph (1 +s)

¥~ 00

« 20-5(] + s)

AC-p )(u).
(2

(5.5)

In the limit » - « Egs,. (2. 16¢) and (2. 16d) and Eqgs.

(2. 18¢)-(2. 18h) acting on the general retarded solution
reduce to the flat-space equations. Note that Eq. (3.9)
l(las b;aen established by our proof of Egs. (3.46) and
3.47).

To find the peeling behavior at past null infinity, let

u=v—2r (5. 6)
and take the limit » — « with v constant. While v is not
the exact advanced time in the Schwarzschild background,
it becomes exact in the limit. The backscatter part of
the field ¥ (4, #) is of order (2M/7) compared with

¥ {u, 7) and does not contribute to ¥, (u,7) in the limit.
Also, we can neglect terms of order (2M/7) in the co-
efficient of a given derivative of Afu) in Y {u, 7). Without
assuming anything about relative magnitudes of the de-
rivatives at past null infinity, we obtain

i-p — —
,rs_p+1wp_~_ 2(1)'*8)/2 lim E (Zl k)’ (l P)’ 2k
v g (2100 BRI —p — BN
x y-l-p+kg (R)y — 27), (5.7)

The content of Eq. (5. 7) is that the general retarded solu-
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tion in the Schwarzschild background approaches a re-
tarded flat-space solution at past null infinity as well
as at future null infinity.

Since the A ¢*) are bounded, »+?+¥, approaches a limit
of zero at past null infinity for p > 0. However, sy,
need only be bounded. The condition (5.4) on the radiat-
ed energy allows rs 2+, to be unbounded at past null
infinity for p < 0. For instance,

Alu) ~ sin[blu/u,)1/3)

gives a finite energy radiated for all [ = s = 0, but

(5.8)

1/25+1¢/_s ~2/3 )2 s-1) 5 oo

at past null infinity for 0 < s = 1 < 2s,

A mathematical condition that the field be asymptotically
regular at past null infinity is equivalent to a restric-
tion on the time dependence of the multipole moment in
the distant past which is much stronger than Eq. (5. 4).
For example, if | = s the restriction is that

lim w4 %)) (5.9)

u—- 00

exist for 0 = & = 2s. The multipole moment must be
asymptotically static in the infinite past—to any given
accuracy it must be static for an infinite time. Such a
restriction is not required by any physical regularity
condition. We conclude that the geometrical regularity
conditions assumed by Penrose are not physically neces-
sary.

A physically more appropriate approach to peeling
theorems is a direct argument from the general retarded
solution to the field equations. Sachs2! and Goldberg

and Kerr22 have proved such theorems for linearized
gravitational fields and for electromagnetic fields in

flat space. Our results support the proposition that
backscatter cannot be strong enough in an asymptotically
flat space~time to destroy the asymptotic regularity of
the field at future null infinity.

6. THE NEWMAN-PENROSE QUANTITIES

The standard prescription for calculating the NPQ's
associated with a spin-s field%523 is as follows. Consi-
der the Newman-Penrose field scalar with spin weight
p = s. Extract the lowest radiatable multipole [ = s, by
performing an angular integration. Denote the resulting
function of u and v by xps(u,r). For example, in the gra-
vitational case

Y, 7) = 21 sin6 d6 do B (u,7,6,¢) ,¥2,(6,9). (6.1)
The ¥ (u,7) are really 2s + 1 complex functions, corres-
ponding to the 2s + 1 possible values of the axial eigen-
value m. Now let

Plu,r) = r2s3Y (u,7) (6.2)
and
R, ) = r2sly (u,7)]. 6.3)
MTYER =
The lowest radiatable multipole moment is
A u) =1lim Pu,r), (6.4)

y >0
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and the NPQ is

NPQ = lim Q(u,7).

700

(6. 5)

Both limits are at future null infinity. There are 2(2s +

1) NPQ's associated with the spin-s field, corresponding

to the real and imaginary parts of the (2s + 1) functions
.

Newman and Penrose*5 gssume that

_ As(u)
- 25 +1

so that both limits (6. 4) and (6. 5) exist, and then show
that the gravitational NPQ's are conserved (independent
of u) if the field satisfies the vacuum Einstein equations
near null infinity. Exton, Newman, and Penrose?3 prove
that the electromagnetic and gravitational NPQ's are
conserved by the vacuum Einstein~Maxwell equations
in asymptotically flat space-times.

NPQ

(6.6)
,25 + 2

W lu,7) + Oy~ Csd)),

Subsequent papers24 have examined various mathe-
matical properties of the NPQ's, but have not shed much
light on their physical meaning. We try to fill this gap
by asking the following equestions in the context of test
fields in the Schwarzschild background: (i) Are the
NPQ's measurable in any physically meaningful sense?
(ii) Under what conditions does the limit (6. 5), and there-
for the NPQ, exist as a formal mathematical property

of the test field? (iii) If the limit does exist, what is the
physical interpretation of the value of the NPQ?

The answers, in brief, are: (i) The NPQ's are not measur -
able and, therefore, have no direct physical significance.
(ii) The NPQ's do not exist for all physically nonsingular
retarded solutions to the field equations. (iii) When the
NPQ does exist, its value is proportional to a certain
average of the lowest radiatable multipole moment in

the infinite past.

We begin with the general retarded solution for ¢ (u, r)
as obtained in Sec. 3:
Y, 7) = A r- (25D
(28:1) 33 2M)
+r- 2D 57 g, g (u, ¥)|
B=1 4

Since the g,(u, ) are uniformly bounded if A («) is uni-
formly bounded to the past

6.7

Plu,r) = A ) + 0Q2M/7). (6.8)

If the general retarded solution (6.7) is substituted into
Eq. (6. 3) for Q(u, ), the result is

2
Qlu,r) = @2s + 1)M[<g1 — —;:;) + (‘)(ZM/’V)]. (6.9)

For general s [see Egs. (5.4a). (5.4b) and (4. 17a), (4. 17b)],

u dA
g:167) = A ) — [ dug—h,(3), (6.10)
—o0 Ug
with
1 1
h = — 6.11
() (2s + 1)y< 1+ y)25+1> ( )
and
y = —ugl/ 2r. 6.12)
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Note that f,_(u,) appears in Eq. (3. 38) for g, (u,7),
vanishes identically when | =p = s as a consequence of
the peeling conditions at future null infinity. Equations
(6.9)—(6. 12) combine to give at » > 2M,

Qlu,r) = (2s + 1)M<As(u)

dA 1
-0 + 5+
or uO y
Qu,7) = (2s + 1)(2s + 2)M
X fow dyA lu — 2ry)(1 + p)-(2s+3) (6, 13Db)

The integrals in Eqs. (6.10) and (6. 13a) come from a
superposition of incoming waves (the backscatter) gen-
erated by previous changes in the multipole moment.

Both P{u,7) and Q(u, ) are directly measurable by a
network of observers covering a finite region of space-
time surrounding the source region at » > 2M. The
observers measure the field tensor as a function of
position. They must project the tensor at each point

on an appropriate null tetrad and then perform an angu-
lar integration to obtain iy (u, r) over the span of radius
7 and over the span of retarded time « covered by the
observers. The choice of null tetrads is not unique in
general; but the spherical symmetry allows a unique
choice for the background Schwarzschild metric. To
first order in the gravitational field perturbations only
the spin-weight p = 0, + 1 parts of the perturbed Weyl
tensor are affected by the uncertainty in the tetrad in-
duced by the first-order deviations from spherical sym-
metry. In all cases, then, ¢ s(“s ¥) is unambiguous to
first order in the test field. Given measurements of

¥ (u, ) for 1 = s to some finite accuracy over a range
of » and u the observers can extract the values of P(u,7)
and @, ») to a corresponding accuracy.

Equation (6. 8) says that at values of » > 2M the obser-
vers will find that P(u,#) is independent of # along an
outgoing radial null geodesic, and assures that its
variation with » can safely be interpreted as the varia-
tion of the multipole moment A _(u), as defined at future
null infinity, with . In this sense, the lowest radiatable
multipole moment is measurable.

The Newman~Penrose constant is the limit (6.5) of

@ (u, 7) at future null infinity. However, Eq. (6. 13) gives
no assurance that the limit exists, let alone that the
value of the limit can be extracted from measurements
of Q(u,r) over a finite region of space—time.

Consider as an example A (u) = A, for all u < u; and
A () = A, for all u >u,. Equation (6.13) gives

. r) = (2s + UMA;, u<wu, (6.14a)
QW) =] (25 + tMla,
—(Ay — AP + @ —uy)/ 2722} >y, (6.14b)

The NPQ at all « is the intial static value of @ given by
Eq. (6.14a). However, at any fixed, finite value of », @
goes smoothly toward a new asymptotically static value
appropriate to the new value of the multipole moment
in the limit & — 2, > 27.

Measurements of finite accuracy will not detect any
deviation from the new static value of @ if the change
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in the multipole moment occurred at a time u, suffi-
ciently far in the past, such that u; «<wu — 2r. It is not
physically reasonable to require that measurements be
made infinitely far in the past (¥ — — ) or at infinitely
large radii (r — « at finite u), or that they be infinitely
accurate. An apparently constant @ need not be constant
all the way out to future null infinity, so the value of @
at future null infinity, the NPQ, is not measurable in a
physically realistic sense.

As Eq. (6. 13b) makes explicit, the value of @ at given
u,7v is proportional to a weighted time average of the
multipole moment over the entire past history. The
weighting function (2s + 2)(1 + y)-(2s3) cuts off at y ~ 1
or uy ~ u — 27, so the average is effectively over a time
Au = u — ugy ~ 2v previous to the retarded time at which
@ is being evaluated. In the limit » — o, the interval

Au expands to cover the entire past history uniformly.
The NPQ is a uniform average of A (u,) over the entire
past, if the average exists. We shall see below that such
an average may not exist. Since any finite range of u,
makes a negligible contribution to the average over the
entire past, the value of the NPQ), if it exists, cannot be
extracted from measurements of the field at finite « and
7, which are only sensitive to A (u,) over a finite time
to the past. In physicalterms, the presenceof an “average
value”” in the field is due to the local superposition of
backscatter from the outgoing radiation of all previous
retarded times.

We define a measurable Newman~Penrose quantity
(MNPQ) to be the value of @ in a region of space-time
where @, to the finite accuracy of the measurements, is
a constant independent of # and ». For an MNPQ to
exist, the average value of A s(uo) must have been con-
stant over times Aw > 27 to the past. Either A (u,)
itself was constant or substantial net deviations of
As(“o) from the average value only lasted for a time
Ou < 2v.

The above definition of an MNPQ differs from our pre-
vious$8 identification of the MNPQ as the coefficient of
»-(2542) in an asymptotic expansion of the field in powers
of "1, The old MNPQ was not defined very precisely
mathematically, since an asymptotic expansion of the
field in powers of »-1 is not always possible. Once es-
tablished, the old MNPQ does persist until a time u — u
= 2r after the field becomes dynamic at v = u,. The
old MNPQ fails at the 5-speed of-light cone 4 —u, = 27,
because on this cone the maximum value of y which
appears in the integral (6.13a), with A {u,) static for

#o < u1,is y = 1. Aty =1 an expansion of (1 + y)-{2s2)
in powers of 1 diverges.

The 3 -speed-of-light cone has no special meaning for
the new MNPQ's, These are associated with the quantity
Q@ (u, 7), which is always well defined and varies con-
tinuously when the multipole moment changes. For a
given measurement accuracy € the new MNPQ persists
until (# — u,)/2r = O(¢) after the multipole moment
changes [see Eq. (6. 14b), for example].

Goldberg?> has still another definition of MNPQ's which
relates them to an artificially constructed “conserved
flux.” Goldberg's MNPQ's also change continuously
when the multipole moment changes. Their values at
finite # and » are no more closely related to the values
of the NPQ's, if they exist, than our MNPQ's.

There is a limit on how rapidly @(u,») can vary. Note
that since A ;(«) is bounded
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-g-g = (25 + 1)(2s + 2M [* dyA (u — 2ry)(1 + y)~(250)

= 0(r-1Q). (6.15)
We now consider some examples of when the limit (6. 5)
defining the NPQ at future null infinity does and does
not exist, First, a sufficient condition for the NPQ to
exist is that the limit

A~ o) =1lm A (u) (6.16)
U~>-00
exist. Then the average value of A _(x) in the limit
r - o in Eq.(6.13b) is just A ((— «), and
NPQ = (25 + 1)MA (— ), 6.17)

A multipole moment which has the limit (6. 16) is, by
definition, asymptotically static in the infinite past.

A retarded solution to the test field equations which sa-
tisfies the strong Penrose peeling condition at past null
infinity is asymptotically static in the infinite past and,
therefore, possesses NPQ's. However, we have seen in
Sec. 5 that there are no physical restrictions which re-
quire the field to satisfy the Penrose peeling condition
at past null infinity or to be asymptotically static in the
infinite past.

As an example of a solution which is not asymptotically
static in the infinite past, but still possesses NPQ's, con-
sider

A (u) = sinbu {6.18)
for a scalar field (s = 0). The integrals in Egs. (6.13a)
or (6.13b) for Q(u,r) involve sine and cosine integrals.
Let

Si(x) = 37 — f{x) cos(x) — glx) sin(x) (6.19)
and

Ci(x) =y + In(x) + f(x) sin{x)} — g(x) cos(x). (6. 20)

The functions f(x) and g(x) have asymptotic expansions

1 2! 4]
f(x)—-;(l—;z— M ) (6.21)
and 1 3 5!
! !
g(x)ﬁ;z,-(l—-;-z- +*;;—'“> (6.22)
when x > 1. The result for @ is
Qu,7) = [1 — (2rb)2g(2rb)] sin(w)
~— (2rb)[1 — (2rb)f (2rb)] cos(u). (6.23)
In the limit » —» «©
cos{u) 1
Qlu,7) = — ===+ O((br)2> -0, (6.24)

so the NPQ exists and equals zero. In other words, the
average of the multipole moment can approach a limit
as uy — o, even though the multipole moment itself does
not,

If the multipole moment varies on time scales which
are the order of u — uy in the limit 5 — — », the NPQ
does not exist. For instance, if
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A ) = sin(c sinh1bu) (6.25)
and ¢ « 1, As(“o) is approximately constant over most
of the range u > uy > u — 2» when 2rb > 1. Thus

Qu,7) =~ (2s + 1)M{ sin[b sinh-1(— 2rd)] + O(c)} (6. 26)

and oscillates indefinitely in the limit 2rb — oo,

We conclude that the NPQ exists if and only if the
average A (uy), over a time Au = u — u,, approaches a
limit as uy — — . Either A is asymptotically static

in the infinite past, or the time variation of A is entive-
ly on time scales infinitesimally short compared with

# — g in the limit 4 — — . Both of these conditions
are rather special, and the NPQ's will not exist for the
generic retarded test field solution.

The conservation of the NPQ's, when they exist, has no
predictive powers; it is a reflection of the fact that an
average of A (u,) over an infinite time is not affected
by time variations over any finite time span. Therefore,
the existence of the NPQ at any finite retarded time
automatically implies the existence of the NPQ with the
same value at any other finite retarded time. The value
of the field at finite » and » depends, to any finite accu~
racy, only on the multipole moment over a finite range
of retarded time to the past and is, thus, in principle
completely independent of the value of the NPQ.

We are left with NPQ's which, when they exist, have only
a formal mathematical significance. For a spin-s zero~
rest-mass test field in any static, spherically symmetrice,
asymptotically flat background (in any metric theory of
gravity), this mathematical significance has a simple
origin. As long as the metric coefficients for the static
background are analytic in 1/7 in some neighborhood of
1/ = 0, it is possible to expand the general retarded
solution for the spin-weight p = s, [ = s part of the

field as

© %
Vo=A lu)r- (2D + 5= (241 57 ak(—zr&) gplu, 7). (6.27)
n=1

Here M is just a parameter indicating the scale of ra-
dius on which the deviations from flat space become
large; it need not have an interpretation as a gravita-
tional mass. The g, are coefficients chosen so that the
static solution for i  has g, = A = const, The rela-
tivistic equations may couple g,lu,7) to g, 5, 5,3, etc.
as well as the g, ;. However, g,(u,7) can only couple
t0 f,,,1 ), as before, since the f, (u) with n< 2s + 1 are
identically zero. The function H, ,(y) in this context,
also, is the homogeneous similarity solution to the flat-
space spin-s field equations. In general, then,

Qlu,7) = 2(2s + 2)Ma,

X [j(’)” dyA (g = u— 2ry)(1 + y)-(2s3) + o(z‘rﬂ)] . (6.28)

The existence and value of the NPQ is related to an
average over the lowest radiatable multipole moment

in the infinite past in essentially the same way as before.
The only possible difference is the value of the coeffi-
cient g, in the relativistic static solution. Thus, the
conservation of the NPQ's (when they exist) depends

only on asymptotic flatness; it is independent of any
special properties of the curvature correction to the
field equations.
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An apparent special property of the Einstein-Maxwell
equations for test fields in the Schwarzschild back-
ground is the appearance of the NPQ's in the spin weight

p =— s part of the lowest radiatable multipole. In Eq.
(3.38), for example, f,, ( is not identically zero when
[ = s =—p;but it has a vanishing coefficient and does

not contribute to g,(u, ). However, even this is a result
only of asymptotic flatness, plus consistency of the equa-
tions for the different spin-weight parts of the field. The
leading backscatter at future null infinity can always be
interpreted as an incoming wave in flat space, so the
coefficients of the incoming wave in the different spin-
weight parts of the field must be related by the flat-
space equations. If the backscatter compensates for the
changes in multipole moment in g, («,7) of the spin
weight p = s part of the field, as it does when [ = s, it
must do so in g, (u, 7) of the other spin-weight parts

of the field, as well.

The generalization of our results to asymptotically flat
solutions of the full nonlinear Einstein and Einstein—
Maxwell field equations is not quite as straightforward.
For instance, the NPQ's of the gravitational field have

a different form when a dynamic electromagnetic field
is present,23 It does seem safe to conclude that if the
lowest radiatable multipole moments of the electromag-
netic and gravitational fields do not have the asymptotic
behavior in the infinite past necessary for the existence
of the test field NPQ's, the NPQ's of the respective fields
will not exist in the full nonlinear theory either. The
conservation of the NPQ's, when they exist, is probably
as trivial a consequence of asymptotic flatness as it is
for test fields.

It may be possible to obtain general retarded solutions
to the exact field equations at large » similar to our
test-field equations and check the validity of these con-
jectures directly. Care must be taken not to assume
more regularity at future or past null infinity than is
physically justified.

Our approach to the physical interpretation of the NPQ's
has concentrated on their existence and measurability.
Glass and Goldberg24 have interpreted the conservation
of the NPQ's in terms of invariant transformations and
an artificially constructed differential conservation law.
They assume that the NPQ's exist and then show that
their conservation is related to a superposition principle
for ingoing and outgoing waves valid asymptotically in
the lowest radiatable multipole in asymptotically flat
space times. We have not found any physical content to
the “conserved flux” they define.

7. SUMMARY AND CONCLUSION

Using the general retarded solution of our master equa-
tion for the radiative parts of test fields in the Schwarz-
schild background, we have examined the nature of the
fields' Newman~Penrose quantities and peeling proper-
ties,

The explicit retarded test-field solution shows that

the NPQ's are a certain average of the lowest radiatable
multipole moment over the infinite past and do not exist
unless the average exists. Even when they do exist,

the NPQ's are not measurable and, therefore, have no
direct physical significance.

Of course, the asymptotically flat boundary condition is
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an abstraction which ignores the existence of other
matter in the universe. In practice, for a star in the
galaxy, one can ignore the other stars out to a radius

of about one light year at most. At such a radius the
multipole moments are very well established, since if

M = 1M,, 2M/7 is the order of 10-12, However, any

net change in the lowest radiatable multipole moment on
a year's time scale or longer makes it impossible to talk
about a conserved NPQ.

The peeling properties of test fields in the Schwarzschild
background are identical to the peeling properties in a
flat background. The mathematical regularity assump-
tions of the Penrose peeling theorem are justified at
future null infinity, but not at past null infinity.

The general retarded solution can also be used to study
the detailed development and decay of the backscatter
and wavetails for all radiatable multipoles. The wave-
tail is outgoing radiation at future null infinity at re-
tarded times after the source has become static. This
material, however, will be presented in a subsequent
paper.
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Physical applications of multiplicative stochastic processes
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The theory of multiplicative stochastic processes has been shown to lead to a density matrix description of
nonequilibrium quantum mechanical phenomena. In the present paper a detailed treatment of the approach
to the uniform, microcanonical, and canonical equilibrium density matrices is presented. The canonical
equilibrium density matrix is approached by the density matrix which represents a subsystem in contact with

a constant temperature heat reservoir.

INTRODUCTION

In a recent paper the theory of multiplicative stochastic
processes was explained, and it was shown how such a
theory potentially leads to a description of nonequili-
brium phenomena.l In the present paper the density ma-
trix formulation of nonequilibrium quantum mechanical
phenomena will be presented with a detailed account of
the approach to the uniform, microcanonical, and canoni-
cal equilibrium density matrices, The circumstances in
which the canonical equilibrium density is approached
are of particular interest since they correspond to a
subsystem which is in contact with a constant tempera-
ture heat reservoir.

RECAPITULATION

The Schrédinger equation for nonrelativistic guantum
mechanics may be written in matrix form as?2

{4 Calt) = T Mo Cold), (1)
where M, .= M,

«a'» Which is the condition of Hermiticity,
and where 2, C(#)C,(#) = 1 for all ¢, which is the condi~

o
tion of conservation of total probability. The Hermiticity
of M, .. in (1) is a necessary and sufficient condition for
the conservation of total probability. Suppose that a fluc-
tuating contribution to the Hamiltonian is considered.
Then (1) becomes

"Zz‘tica“’ = DMy Coo (1) + T Mo (OC (1), (2)

where M_ . (t) = M., (t),and the following properties
hold for the averaged moments of M. ()

(M. (t)h =0, (3)
(M_, (Mg, () = 2Q  qrg50 O(E — ), (4)
<Mu1"1(t1)' ' 'Mﬂzn—1”2n-x(t2n~1» =0 forn=12,... ,(5)
<M“1“1(t1)' ' .Ml‘zn "2n(t2")>
1 f] -
T 2nal pE€Syy, J'=1(M“P(2j~1)"P(zj—l)(tP(Zj“D)
M“p(zj)”p(zj)(ti’(zf’»
= f1 2
T enl pes, 1 (a0 ()Y (2D
X G(tp (25-1) tp(zj))y (6)
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where S, is the symmetric group of order (27)! The
properties given by (3), (4), (5), and (6) are those appro-
priate for a purely random, Gaussian, stochastic, matrix
process. Such stochastic processes are the only type of
stochastic process to be considered in this paper.

A density matrix representation for the Schrédinger
equation is obtained in terms of the density matrix p_,
(£), which is defined by3

pas(t) = CLOC,(H). 0
With the definitions

LaBa'B' = éatx'MBB’ - 6BB'M;u' 8

Echoz'B' = éaa’ ~BB'(t) - 6BB'[[Z(:(aL’(t)’ (9)

Eq. (2) may be used to directly verify
. d =
’?i?paa(t) = ??[I‘aﬁa'ﬂ' + Laﬁa'ﬁ'(t)]pa'ﬂ‘(t)' (10)

This is the fluctuating density matrix equation. Using
(3)-(6) to average over the stochastic contribution to
(10), an equation for the averaged density matrix (p ,(¢))
may ble obtained, although only after considerable compu-
tation

£<p“5(t)> = _Zg,)g; Laﬂa'B’<pa'B'(t»
_§§Raﬁu'e'(pa's'(t»- a1

The “matrix” R g .- which appears in (11) is defined
byt

R pap = Gaa'ngseee' + GBB'Ze)Qeaa'O
—QBB'oc'a _—Qa'aﬂﬂ" (12)

where Q ;,, is the “matrix” which appears in (4) and (6).

From (12) it also follows that for arbitrary complex
matrices X 1,

Z E Z EX:BRaﬂa'B'Xa‘B' =0 (13)
o B -a' B'

and for arbitrary u and »1,
2Ry uae =0 (14)
o

APPROACH TO THE UNIFORM EQUILIBRIUM
DENSITY MATRIX

Equations (13) and (14) lead to a proof that (11) describes
the approach of (p g4 (£)) to an equilibrium density
matrix which is uniform?;

Copyright © 1973 by the American Institute of Physics 20
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(poa(t) e Pob g (15)
If there are N eigenstates involved, then conservation of
total probability implies py = 1/N. The equilibrium den-
sity matrix given by (15) has been discussed by Tolman.4
If the different eigenstates also have different energy
eigenvalues, then the uniform equilibrium density matrix
nevertheless gives equal weight to each eigenstate inde-
pendently of its energy eigenvalue. Physically, the uni-
form equilibrium density matrix has found almost no
applications, and only possesses theoretical interest,

The reason that the uniform equilibrium density matrix
asymptotically occurs is that in (2) no restrictions with
respect to elgenstate eigenstate couplings have been im-
posed upon M .(t). Unrestricted, M o (t) may couple
any two elgenstates even if their energy eigenvalues are
greatly different. It is this feature of M . (¢) which leads
to the uniform equilibrium density matrlx.

APPROACH TO THE MICROCANONICAL EQUILIBRIUM
DENSITY MATRIX

Consider Eq. (2). Because both M_,. and M, .(t) are
Hermitian matrices, there exists a unitary transforma-
tion which dlagonahzesM . while transforming M, o (8)
into another Hermitian matrix M T (1). This transfor-
mation may be schematized by

M, —d,6

o aa’?
(> ML, ().
In the following, the superscript T will be dropped. There-

fore, by unitary transformation, Eq. (2) may always be
written in the form

(16)

i, (17)

d .
i gr Call) =d Co (1) + %} M, (8)C,. (8), (18)
where the d_.are real numbers and correspond to the
energy elgenvalues 2 Equation (18) is as general as (2).

In order to obtain the approach to the microcanonical
equilibrium density matrix instead of the uniform equili-
brium density matrix, it will be required that the # war ()
in (18) be restricted by the condition that it does not
generate couplings between eigenstates o and g, for which
d, = dg. In this way the fluctuating contribution to the
Hamiltonian only couples eigenstates corresponding to
the same degenerate energy eigenvalue. Formally, this
51tuat1on is achieved by the replacement of M o (8) with

o (Dod, —d ), where 6(d, —d ) is the Kronecker
delta symbol in the two arguments d and d .. Equation
(18) then becomes

L) =d,C 0+ 2 Mo (D0, —d,)Cur (D), (19

which clearly separates into an equation for each distinct
degenerate energy eigenvalue manifold of eigenstates.

Therefore, in the following, consideration will be con-
fined to one particular, but otherwise arbitrary, degene-
rate manifold of eigenstates for which the energy eigen-
value will be denoted by d.2 Therefore, (19) becomes

d -

77 Ca(t) = dC,(8) + aZMaa.(t)Ca. (1), (20)
where it is understood that all the eigenstates coupled
by M. (t) have energy eigenvalue 4. With this in mind,
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properties (3)—(6) characterize the various averaged
moments of M_.(%).

The averaged density matrix equation corresponding
with (20) is given by

ERaBa’B'<pa'ﬁ'(t» :
a' B’

dt(pas (th = (21)

The analog to the first term in the right-hand side of (11)
is zero in (21) because

L = 80 Myg — 855 M2 = db, . 85g —db_ .04,

= 0. (22)

The equilibrium state follows from conditions (13) and
(14) and is given by

afa’B’

<paB(t)> > o0 pOOaB’ (23)
where p, = 1/N if the degeneracy is equal to N. There-
fore, each eigenstate in the degenerate manifold becomes
equally probably in equilibrium.

It is of particular interest to consider how the total
energy behaves during the approach to the microcanoni-
cal equilibrium density matrix. The total energy is given
by3

Etotal (t) =

E%}[dé

d+ 20 2 Mop(1)p (1)

aB + Maﬁ( t)]paﬂ( t)
(24)

i

The first term in the second expression follows from
conservation of total probability. In the Appendix it is
proved that

<E ‘%‘,Mae(t)pas(t)> = 0. (25)

Therefore, the total energy, on the average, is d for all
times ¢, while 25 25 M_,(#) p,4(?) represents the fluctua~
o« B

tions of the total energy around the average value d.
These energy considerations complete the treatment of
the approach to the microcanonical equilibrium density
matrix,

APPROACH TO THE CANONICAL EQUILIBRIUM
DENSITY MATRIX

Consider a subsystem in contact with a constant temp-
erature heat reservoir. The complete system will have
an equilibrium state characterized by a microcanonical
density matrix. However, the equilibrium state of the
subsystem will be characterized by a canonical equili-
brium density matrix if the heat reservoir is very large.
Of interest here is the situation in which the heat reser-
voir remains in its equilibrium state throughout time
while the subsystem relaxes into equilibrium with the
reservoir from an initial nonequilibrium state. The pro-
blem will be to determine the dynamical equations for
the relaxation of the subsystem into its canonical equili-
brium density matrix.

Denote the Hamiltonians for the subsystem and the heat
reservoir by Hg and Hy, respectively. It is assumed
that the state of reservoir is given, on the average, by
its equilibrium state throughout time., Therefore, the in-
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teraction between the reservoir and the subsystem is
represented by a stationary, purely random, Gaussian
Hamiltonian H(#).

Latin indices will be used to denote eigenstates of the
subsystem

Hgld) = E, |4). (26)
Greek indices will be used to denote reservoir eigen-
states

H;lo) =Ea|a). 27

Generally, H(¢) will have nonzero matrix elements in the
direct product manifold of the two eigenstate manifolds
of Hg and Hy . Denoting the identity matrices for the
subsystem eigenstate manifold and for the reservoir
eigenstate manifold by 1; and 1., respectively, the total
Hamiltonian for the complete system may be written as

Hypop = Hs® 1, + 1@ H, + H(D), (28)
The Schrddinger wavefunction y(¢) may be expanded in
terms of direct product basis states.

p(t) = 2 TC. (0.
1 o
With the Hamiltonian given by (28), (29) leads to?

;4
dt

(29)

Cio () = (B, + E)C; () + H, ;5 (DC;5 (1), (30)

where H;_ ;4 (1) is defined by

B o) = CalGIH(D)I] B (31)
In (30) and throughout the remainder of this section the
repeated index summation convention is used.

In order to insure that this description leads to a micro-
canonical equilibrium density matrix for the complete
system, it is necessary to restrict A, ;, (f) to be zero
unless E; + E_ = E; + E; . This restriction is schema-
tized in Fig. 1. with this restriction, (3) is a special
case of (20) if the substitutions

d= (E;+ E)= E g and M, .()>H ;, (1) (32)
are made, and if (30) is restricted to a single degenerate
manifold of eigenstates for the complete system with
total energy E...,- Because of a result analogous with
(25), the energy eigenstates of the complete Hamiltonian
are, on the average, direct products of the energy eigen-
states of the subsystem and reservoir Hamiltonians.

The density matrix is defined by3

Pigip () = CH(DC (1), (33)
RESERVOIR
L~ EIGENSTATES ™
a B
A

COUPLING
INTERACTION

SUBSYSTEM

EIGENSTATES
=Ounless E; + E_ = E; + Ej.

FIG:1. H

iajB
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The stochastically averaged density matrix satisfies the
equation2

d .
2 Piass () = ~iLigjau000p (Pirgryg (1)

(34)
_kRiajBi'a'j’B'<pi’a'j'5'(t»,
where
Ligjpiraryre = OuirOgqr (B + Eg)0j5: 85 — 8505
X (E;+ E )6, 6 ... (35)

The expression in (35) is actually equal to zero since
the direct product eigenstates are restricted to the
manifold satisfying

(36)

as is implied by (32). This corresponds to the absence
of an L term in (21), However, an L term is explicitly
indicated in (34) since it will actually manifest itself
later. The R, . in (34) is defined by

tajBi'a’j

Ei+Ea=Etotal=Ej+Eﬁ’

R (37

iajgi‘a’j’e = Yii’ 6aa'QJ’see‘ee‘j'ﬁ'

+ 6-”' GBB: Qeeliailaleel - stjlﬂlilali[x - Qi'a'iajﬂj'ﬁ' >

where

<Hiajﬁ (t)Hi’u'j'B’ (sh = 2Qiajﬂi’a'j’ﬁ' (¢t —s). (38
The condition that the reservoir state remain the equili-
brium state throughout time is imposed by assuming that
the averaged density matrix (p; ;5 (#)) factors into a
direct product of the subsystem density matrix, and the
reservoir density matrix in which the reservoir density
matrix is given, for all times, by its equilibrium density
matrix. The reservoir equilibrium density matrix must
be the canonical density matrix because of: (36), the con-
dition that the complete system has a microcanonical
equilibrium density matrix, and the condition that the
subsystem has a canonical equilibrium density matrix.
Formally, the factorization is given by

(Piasn (N = (i (D0 e (39)
where

(Pas) = (1/Qg) exp(— (E,/K5T)] 6,
where Qp = 2, exp[~ (E ,/K5T)], K pis Boltzmann's
constant, and 7 is the temperature of the reservoir.

Putting (39) and (40) into (34), followed by taking the
trace over reservoir eigenstates, produces the following
equation for the averaged subsystem density matrix:

(40)

d ,
at—(p,-]-(t» = —1(Ej*Ei)(pi,-(t)> (41)
1 E_,
“Ricjaitatsar & exp (’Kfz‘,><9i'j’(f)) .
Note that the L term of (34) does contribute to (41).
By defining T ;;;.;. by
Ty = Rigjaini o (1/Qr) exp[— (E,. /KgT)], (42)

Eq. (41) becomes
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Zg_ (ng(t» = Z(EJ - E,')(P;‘j (ty — T;'jpjl(Pi'j' (ty.
(43)

It is of interest to consider the relationship between
T*’i"'f" and T, The use of (37), (38), and Fig. 1 is re-~

i
quired.

Figure 1 and (38) imply that

Qigjpiarjry =0 unless E, +E =E +E,
and E; +E, = E;, +Eg, (44)
This may be written with Kronecker deltas as

Qigisitais 8(E; + E, —E; — E)E; + E_, — Ej, — Eg).

(45)
Using expressions similar to (45) in (37) leads to

Rigisiatis = [01 0o Qiposroers s 0E; + Ey— By — Eg)
X WE,+ Ey — E;. — Eg.)
+ 6,5 050 Qog iaitaroe HEBe+ By —E;—E,)
X O(E; + B, ~ By — Eg) — 2Qj5j05 i i)

X 6(Ej + EB-_EJI “"E :)6(.E‘3 + Ea “-"Eia ""‘Ear). (46)

Using (46), along with appropriate index changes, in (42)
gives

Tijirr = [0i1 040 Qjapeteerjar OB + E, — Ey— Eg)
X 8(Eg~ Eq — Ejp — Ep)) + 850800 Qogriai'a’os’
X 8(Ey+ Ey — E; — E_)0E;. + E,, — Ey— Eg)
~2Qjq v iarialOlE; + E,— By — E)
x 8(E; + E_— E; — E_)(1/Qy) exp[— (E_./K zT)]
= [0 5aa'Q;'a'ee'ee'ja5(E} + E, — Ey — Eg)
x O(By + Eg — Ejp ~ By + 05 804:Q50ri0%ic00r
x 6(E, + Ey — E,~ E)8(E;. + E,. — E, — E,)
~ 2Qjjatatta')OE; + By — B — E,))
x 8(E; + E,— E;, —E_))
X (1/Qy) exp[— (E../K 5T)]
=[6,; 0,4 Qo000 jo HE + E, — Eg — Eg)
X OBy + Eq —E;— E ) + 8;5:0,4:Q60'ivaic’oe
X 8(E, + Ey — E;. — E_)8(E; + E,» — Eg — Eg)
- ZQ;’aja’ia’i’m]é(Ej’ +E,—E;—E,)
x 8(E, + E,. — E;. —E_)
X (1/Qg) exp{— (E, /K gT)). “@mn
The second equality in (47) follows from the Hermiticity

of H(?) in (38), while the third equality follows from re-
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naming the indices o and «’according to the interchange
a < ¢’ In the last expression for T;s5050 10 {47), the fac-
tors 8(E;. + E, — E; — E_)8(E; + E,. — E,, — E,) require
that £, = E . + E; — E;, = E, + E; — E;, which may be
combined to give

1

E,=E, + }E; + E,— E;, — E.). (48)
This means that
8(E;. + E,— E; —E,)8(E; + E,, — E;, —E,)
X (1/Qp) exp[— (E, /K5 T)]
= 8(E;. + E,— E;—E_)0E, + E,. — E,, — E_)(1/Qp)
X exp[— (E,/KzT)} exp[— (E; + E,

— E. —E;))/2K,T]. (49)

Putting (49) into the last expression for T
gives

. in (47)

iji'y

Tijt"j‘ = [6ii’6aa'Q;'a96'66’ja' 5(Ej' + E(x —E ‘“Ee')
X 8(Ey + By —E; —E,) + 8,508,

X Qgotiwia'es’ O(Ey + Eg — By —E,)

X 8(E; + By + By ~ Eg) — 2Q}rpjariarive )

X 8(E;, + E, — E; — E,)0(E; + E, — E;, —E,)

a
1 E .
X —— exp (—— 2z )
Qr KgT

E,+E.—E,.,—E,,
Xexp(_.‘f By 2By (50)
2K T
However, using (46) in (42) in order to calculate Tiriesss
directly verifies that (50) is simply
Tyjyejo = Tiojey; eXp[— (E; + E, — E;, —E;)/2KzT].  (51)

Together, Egs. (43) and (51) provide the dynamical des-
cription of the temporal approach to equilibrium of the
averaged density matrix for the subsystem. Equation
(51) is a generalized detailed balancing condition.

It can now be proved that the canonical equilibrium den-
sity matrix is obtained asymptotically:

<Pij(t)> ';_‘:;? (I/Qs) exP["“ (Ej/KBT)]éijy {(52)
where Q5 = 7, exp[— (E;/KT)]. The proof of (52) uses
J
the first equality given in (47) to show that
Tiji'j'(l/Qs) eXP[“‘ (l':j'/KBT)]5i'j' = 0. (53)

Pyoof of (53):
From (47) it follows that

T5:5-(1/Qs) exp[~ (E;. /KT )}5,.;.
= [51‘1" 6ao¢'Q]'a69’66'j’a' é(E]. +E,—E — Ee')

X 6(Ey + Eg — Ej — Eg) + 6,0,
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X Qee’iai’a’ee' 5(E9 + E, —E —~Ea)
X G(Eil + EDL' ——Ee —_Ee’)
- ZQJOU a'!’a'ta]é(f‘}' + Eﬁ — Ejl - Ea')

X 8(E; + E.— E; —E,)

1 ( EQ_.) 1

X — exp e
@ KpT/ Qg

= [éaa'Qjocee‘GG‘ia’ G(E} + Ea -

x OEg + By —E; —E ) + 8, Qeriajuree’

- Ee - Eel)

E.,
exp |— —4=) 5, '
K,T

E, — Eg)

x 8(E;, + E,, —E; —E_,)6(E; + E.

- 2Q§aea’6a'ia}6(Ej + E,—E; — Eq') 6(Ee + E,
—E;— E,)(1/QxQs) exp[— (Eyora /K pT)]
= (Qjn0000'ia+ Qeeininos’ ~ 2@ju006'06'ia)
X 8(E; + E, — Ey — Eg) (E, + Eg — E; — E,)
X (1/Qy Qg) exp[— (Byoa /KT = 0. (54)

The second equality in (54) used (36), while the fourth
equality used (38). This completes the proof of (53).

SUMMARY

It has been shown how the theory of multiplicative sto-
chastic processes leads to a description of the approach
to equilibrium of the density matrix for a quantum
mechanical system. In the case of a system which main-
tains a constant average total energy, the approach to the
microcanonical equilibrium density matrix is described.
In the case of a subsystem in contact with a constant
temperature heat reservoir, the approach to the canoni-
cal equilibrium density matrix is described. This last
case provides a unified treatment of some aspects of the
problems of magnetic resonance relaxation, speciral
line shape when the line shape is Lorentzian, and mole-
cular reaction relaxation phenomena.5 ¢ Detailed ac-
counts of these and other problems from the perspective
presented in this paper remains to be presented.

APPENDIX
Proof of (25): Using Eq.(20), Cy(t) can be written as

; . Sk Sk Sg 18,
C.(t) = e-idt (e [f .. E E
X 22 IR ol )
EZ Msu 1(Sk) Hpoihg 2(Sk ’)”‘ Baky (SZ)
Ho Hy
X M, g (S1)dSy" -+ dS,Cy(0). (55)
Similarly, C}(f) can be written as
. N S; S, S3 18
crp=et T L@ f T [P D
a' 170 vy ¥y
E E Ma v (Sl)Mu vy (52) vl 2¥-1 (Sl-—l)
Yi-z Y
X M,  o(S)dSyedS,CL(0). (56)

In (56) the Hermiticity of M(¢) has been used., In both
(55) and (56) the multiple integrals are time ordered
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withi =S, =8, , =+ 28,28, = 0. Using (7), the
quantity of interest in (25) may be written as

(2 D000
-z > c;umaamcﬁ@
Il ft

fs“‘E (DD D (5

V-1 H g

=§222i‘§f§<z>z—>kffsl

B o B IF0k=0
”l 1“( ;)

X M op(OMg, . (Sy) M, 5(S1)) CX(0)Cy (0)dS,
k-1 1

-+ dS,dS;- - - S
&R, . t 5] S, rt S s
— L{— )R ves P2 E,.. [%2
- Qzﬁo(’) =2 z:‘?fofo fo fofo fo
XL DL L L DM, ()
a B Viey Bpey #y
Xoeoo B, o (8]) Mog(D)y,, (S,): M, g (S1)
X C3:(0)Cy (0)dS, -+ - dS,, dSq* * + dS,. (57

Two cases need to be considered in evaluating the last
expression (57). These two cases are (a) 2 + 1 is even
and (b) 2 + 1 is odd.

Case (a): I k + lis even, then therearek + I + 1
M(¢)'s in the product, and the average will be zero be~
cause of condition (5).

Case (b): Ik + lis odd, then there are e + [ + 1
M(2)'s in the product, and the average will not be zero
because of condition (6). However, it will be shown below
that these nonzero terms occur in pairs of opposite sign
so that the sum of all such nonzero terms is zero.

Letp + ¢ be odd and consider the two terms: £ =p and
I=yg,and k = q and I =p. In the first case the last ex-
pression in (57) contains the factor (§)9(— i)?, whereas in
the second case it contains the factor ({)?(—7)?. How~
ever, p + g is odd implies
@ U— )2 = (- 1)P()#"9 = — (— 1)9() 9P = — ()P (— )4
(58)
Therefore, if the remaining integral factors of these two
terms are equal, then a pair of nonzero terms with oppo-
site signs have been identified.

The remaining integral factor in the 2 =p and I = ¢ case
is

t 8
2%l lo"

AT oD 2poREp 9 R

Vg1 Fpay

x LAM,., Sy M, -la(S;)MuB(t)AZBHP_l(SP)
By

X+ 08, 5(S1) CL(0)C,. (0)dS,: * dS, dS; -+ dS,

(59)
In the £ = ¢ and I =p case the remaining integral factor
is
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t 05, S2 0t s, S,
:Z;%;fofop...fo fofos e 120D LIRS

0
1 Vp-1 Fg-1

X T (M, () A,

2 ST (00T, (S,)

X <o M, g(S1) Cgr (0)Cy. (0)dS, - - - dS, dSy*+ + dS,,.

(60)

Therefore, the proof of (25) is reduced to proving that
(59) and (60) are equal. That (59) and (60) are equal
follows from the property that the trace of a product of
matrices equals the trace of the transpose of the product
of matrices. This is explicitly illustrated above by con-
sidering CJ. (0)C, (0) as a matrix, using the transpose
property of the trace, renaming indices, and relabeling
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the variables of integration. Thereby, the expression in
(60) may be transformed into the expression in (59).
This completes the proof of (25).

IR. F. Fox, J. Math. Phys. 13, 1196 (1972).

*Throughout this paper physical units are assumed in terms of which
Planck’s constant 4 has the value 1 and, therefore, does not explicitly
appear in any equation.

This definition is to be contrasted with the definition given by R. C.
Toleman, The principles of statistical mechanics (Oxford U.P., New
York, 1962), Chap. IX. The expressions for density matrix averages of
quantum mechanical operators are, therefore, also different.

“R. C. Tolman, Ref. 3, Chap. IX.

*R. Kubo and N. Hashitsume, Prog. Theor. Phys. Suppl. (46), 210
(1970).

M. Blume, Phys. Rev. 174 (2), 351 (1968); M. Clauser and M. Blume,
Phys. Rev. B 3 (3), 583 (1971).
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We derive a set of integral equations which are necessary and sufficient conditions on the form factors
of local field theory, i.e. on the matrix elements of local operators. The basic idea is that out of the set
of all (distribution-valued) functions defined on the boundary of an analyticity domain, in general only a
subset are boundary values of functions which are analytic within the domain. The form factors are
boundary values of a vertex function which, due to the general assumptions of locality, reasonable
energy, and mass spectrum and Poincaré covariance, is analytic at least in the domain constructed by
Kallén and Wightman. The characteristic boundary of the domain (“the distinguished boundary”) is the
set of physical values of the arguments of the form factors, and the integral equations in that way only
involve such values. The main advantages in formulating the locality conditions in this way are that (1)
only the physical quantities of the field theory, i.e., the matrix elements between the field operators,
enter into the equations and (2) the frustrating complications which are met in the construction of the
domains of analyticity for # -point functions with # >3 might hopefully be avoided because the
distinguished boundary can be constructed even if the whole domain is not known. The integral
equations have naturally no unique solutions, because, e.g., all perturbation-theoretical form factors
must, of course, fulfill them. The equations may, however, function as a convenient starting point for
approximations and “model building” for form factors outside the presently used perturbation theories.
The integral equations are straightforward generalizations of the notion of “‘weak local commutativity” for
the two-point function. This condition means that the two spectral functions connected to two locally
commuting operators should be equal. The conditions on the form factors (which are the generalizations
of the two-point spectral functions) are that the difference should vanish when integrated over certain

physical sets of mass space.

1. INTRODUCTION

In a series of earlier papers’2 we have investigated
the properties of the vertex-function particularly in
momentum space, The basic input has been the analy-
ticity properties proved by Killén and Wightman3 (this
paper is hereafter referred to as KW) from some gen-
eral assumptions which are expected to be fulfiiled in
all (interesting) field theories. In a nonepsilontic way
the assumptions are that the field theory exhibits%5

(1) Lorentz covariance and translation invariance,

(2) “reasonable” mass and enevgy spectrum

(3) locality in the sense of local commutativity.

The following results from KW are of interest for this
paper:

There is a function G = G(Z,,Z,,Z;) depending upon
the three complex variables Z,, j = 1,2,3. These
variables can be interpreted as the Lorentz squares
(“mass squares”) of three complex energy—momentum
vectors p’ ; fulfilling energy—momentum conservation:

3

ijzO, P]' =pj+ik].,

7=1 Z = 52 .
7 7 E b 3

(metric p2 = p2 — py?)

There is further a domain D, in the three-dimensional
complex space of the variables Z ; defined above such
that

(i) the function G is analytic at least inside the domain
Dkw’

(ii) the matrix elements of the field operators in the
theory are different boundary values of the function
G on the real axes of the variables Z; (which con-
stitute parts of the boundaries of the domain D).

In order to make use of the above-mentioned analyti-
city properties of the vertex function, we will make the

26 J. Math. Phys., Vol. 14, No. 1, January 1973

additional assumption that G exhibits certain bounded-
ness properties along the boundary of the domain D ..
We will in particular assume moderate integrability
properties for the boundary values of G (fulfilled, e.g.,
for temperate distributions) and at most polynomial
growth in asymptotic directions (i.e., when one or more
of the variables Z ; approaches infinity) inside the do-
main D .

We will actually be satisfied to investigate the proper-
ties of the “absorptive parts” of the vertex function G.
Due to the symmetry between the variables Z, it is
sufficient to consider the quantity A3G deﬁnec{ by

83G(Z,,Z,,b5) = lir{)x (GZ1,24,03 + ie)
€ —>

The quantity b5 in Eq. (2) will always be a positive real
number. Then the absorptive part defined in that way

is the discontinuity of the vertex function across the
real positive axis of the third variable. This is one of
the possible “axiomatic” singularity surfaces of the
vertex function G according to the investigation in KW
(“the Z5-~cut”). This discontinuity can be interpreted

as the contribution from the states with squared mass by
and with the quantum numbers of one of the fields (here
the C-field; cf, the formulas in Sec. 2B). The absorptive
part A;G will in general exhibit distribution properties
considered as function of b5 while it is analytic as func-
tion of the remaining variables Z, and Z,,.

The corresponding quantities A;G and A,G with obvious
definitions exhibit the same properties as 4;G after
appropriate exchange of indices. It is possible to de-
rive representation formulas (“dispersion relations”)
{cf.Ref. 1 hereafter referred to as DI and DII) by means
of which the absorptive part A;G is determined from

its boundary values. In some cases these boundary values
are the above-mentioned matrix elements which we will
refer to in the following as “form factors” (a precise
definition is given in Sec.2B). In the other cases it is
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possible (according to the results in Sec, 3) to express
the boundary values in the representation formula as
functionals of the form factors.

Additional information on the properties of the vertex
function will then via the representation formulas imply
restrictions on the form factors. If, e.g., the vertex
functions is assumed to vanish at a certain rate at in-
finity it is possible to write “super convergence rela-
tions” or “sum rules” for the form factors (cf.Ref. 2
hereafter referred to as SI, SI, SIII).

Theve are, however, basic rvestrictions on the form fac-
tors from the meve fact that they are boundary values
of an analytic function, To see that in more detail, con-
sider the set of functions J(D), which are analytic in a
certain domain D. From (D) it is possible to construct
the set of distributions 6 which are boundary values on
the boundary of D, 8D, of functions in 3¢(D). Then the set
of 63Cis a subset of the set £{6D) of «ll distributions
defined on 8D. In geneval d3C does not coincide with
L£(6D).

The kind of restrictions that are necessary and suffi-
cient in order that a distribution in £(6D) also is in 53¢
depends upon the domain D and in particular upon “the
appearance” of the boundary 6D. To clarify the problem,
we will consider a few examples with well-known solu-
tions.

In the first example the domain is the unit circle in one
complex dimension. Any function k(Z), analytic within
the unit circle, can be represented by Cauchy's theorem
as

r(Z) ZEIE f:"de FO)(1 — e-i0Z)1, (3)

The weight-function in (3) can be chosen as the (in
general, distribution valued) boundary value k(e¢). On
the other hand an arbitrary weight function f(only re~
stricted so that the integral exists) defines via Eq. (3)

a function % analytic inside the unit circle. The problem
is to characterize those weight functions f(¢) which are
boundary values of the corresponding analytic function,
i.e., which (in a distribution theoretical sense) fulfills

£(8) = limk(ne ), (4)

n-1

That the problem is nontrivial can be seen from the
weight function f(9) = ¢-%®, This weight function gives
the result # = 0 in Eq. (3), and therefore Eq. (4) cannot
be fulfilled.

The solution to the problem is actually related to this
fact. If the weight function f{6) is represented as a
Fourier series (which is always possible in distribution
sense)

e) = 25 f.e 79, (5)
7 =-00
then the condition that f(8) is a limit according to Eq. (4)

can be formulated as the following set of integral equa-
tions:

0=f, _21,] "do flo)e-in;

As a second and maybe more well-known example (and
actually a special case of the one above), we will con-
sider functions analytic in the whole complex plane with
a cut along the positive real axis. Any function y with

n<0, (6)
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these analyticity properties and vanishing around infinity
can be written as

") =502 [7 ola) 4, )

21:2 a—2

The function ¢ can be identified with “the imaginary
part” of y in the following sense:

lm[y(d + ie) — y(b — ie€)]

[l

= (270 [¢ (a)da 27i6(a — b) = ¢(b), >0,

= 0, b&<KO0,
Then “the real part” of the function y is determined by
“the imaginary part” ¢ by means of a principal-value
integral:

Limly® + i) + y(b —ie)] = (vi)! Jdap(a)/\a—b)p. (8')

This relation {(“dispersion relation”) is actually equiva-
lent to the conditions in Eq. (6) if the “cut plane domain”
above is mapped into the unit circle, e.g., by the mapping

w = (i— V2 )i +v¥Z)-L.

In the case of several variables there are some
further complications.® Thus an arbitrary domain in
the 2x (real) dimensional space of » complex numbers
cannot be a domain of analyticity. In general it is pos-
sible to continue every analytic function regular in a
given domain into a larger domain. This larger domain
is called the “envelope of holomorphy” of the given
domain. The reason for this phenomena is that the
Cauchy-Riemann equations, which are the conventional
criterion of analyticity, do in the case of several com-
plex variables “overdetermine” the function. This can
also be seen in the fact that all the functions analytic in
an analyticity domain are actually determined by the
values on only a low-dimensional part of the boundary
of the domain. As an example consider the function K
which is analytic in the topological product of z unit
circles:

as,

K(Z,y,. =73

e Z,) (Zn)nf FlByseens8,)  (9)

The actual integration region is in Eq. (9) only # (real)
dimensional while the dimension of the boundary in
general is (22 — 1).

The integration domain, which consequently determines
K completely, is known as “the distinguished boundary, ”
and intuitively it corresponds to “the utmost corners”
of a domain of analyticity.

The problem in several variables which corresponds to
the one discussed above for one variable is then to
characterize those distributions which are defined on the
distinguished boundary of a given domain of analyticity
and are boundary values of functions which are analytic
inside the domain.

For the particular domain above the problem is a
straightforward generalization of the condition in Eq, (6).
Thus, the weight function f is the limit of

floq, .. . M), (10)

. =lim...limK i
S S

iff all coefficients vanish



28 Bo Andersson: Locality conditions on form factors

fjpreedn =0, andj, <0,
. 1 21 27
Fiedn = (27r)nf0 d91---f0 s, f6y,...,6,)
x e—i GO+ 4igby ) (11)
in the multiple Fourier series for f:
o0 o0 i A
f6y,ees6,)= 2 L0 2 f, et dS) )
e e

As a final example we consider the topological product
of “cut planes” like the one in the earlier example, In
that case a function analytic in the domain and vanishing
in all directions around infinity is given by

Z)= 1 o0 da]. )
P(Zl,... " _Wjo jl;ll _qub(al,...,an . (13)

4y

In that case the distinguished boundary is the topological
product of positive real axes. As each one of them is
“exposed” in the same sense as in connection with Eq. (8)
we may deduce that any distribution ¢ (with the right
support properties and such that the integral makes
sense) is “allowed” and is related to T’ similarly as in
Eq.(8). Unfortunately, the domain of analyticity found
for the vertex function in KW is more complicated than
the domains discussed so far. Nevertheless, certain
features of these examples also appear in connection
with the vertex function.

By an appropriate limit procedure |similar to the one

in Eq.(8)] it is possible to express the form factors as
limits of the representation formula for the vertex func-
tion, This then defines the form factors as functionals
of the weight functions in the representation formula.

On the other hand, these weight functions, being com-
binations of boundary values of the vertex function, can
actually be expressed as functionals of the form factors
by means of another limit procedure and another set of
representation formulas (cf. Sec. 2A and 3).

In this paper we derive a set of conditions for the com-
patibility of the procedures above, It turns out that
just as in Egs. (6) and (11) the conditions can be express-
ed as integral equations, in this case for the form fac-
tors. In contrast to the cases above, however, there is
ounly a finite number of such equations. It should be
mentioned that the integral domains of the equations
{the distinguished boundary of the domain) only contain
physical values of the form factors.Inasmuch as the
(freely performed) changes of orders of integrations
and orders of limits and integrations are allowed, the
conditions which are derived are both necessary and
sufficient conditions.

The possibility of reformulating the general assumptions
of field theory into integral equations of this kind is
useful because:

(1) Only the physical quantities of the field theory,i.e.,
the matrix elements of the operators, enter into the
equations,

(2) One of the major obstacles in order to carry through
a program similar to KW for n-point functions with

n > 3 is that the analyticity domains are rather compli-
cated.”® The distinguished boundaries of the domains
are, however, possible to find and to discuss even if the
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whole domain might be frustratingly complicated to
construct.

The integral equations do, of course, have a large set
of solutions. All perturbation-theoretical vertex func-
tions should, as a matter of fact, be included in this set
because all of them fulfill the general assumptions in
KW,

On the other hand, the equations can serve as a con-
venient starting point for dynamical approximations and
model building. By the equations the, in general, non-
trivial problem of incorporating the constraints of local-
ity into a model of some form factors is solved. The
integral equations are also straightforward generaliza-
tions of the results for the corresponding two—-point
function problem. In that case local commutativity im-
plies “weak local commutativity, i.e., that two “spectral
functions” should be equal. Here we will find that the
difference between two form-factors (which generalize
the spectral functions of the two-point function) shall
vanish when integrated over certain physical sets in
mass space,

In Sec. 2 we have gathered some earlier results, in order
to make this paper reasonably self-contained. Thus in
Sec. 2A some properties of the representation formulas
from DI and DII are presented.? In Sec. 2B we define the
connection between the vertex-functions and the matrix-
elements of the field-operators. To that end, we make
use of the well-known properties of the causal functions,
i.e., the retarded and advanced functions,?410 In Sec.
3A we briefly discuss the appearance of the distinguished
boundary of the analyticity domain of the vertex function.
In particular, we show (with an explicit construction in
Appendix B) that all points on the distinguished boundary
are surrounded by a neighborhood contained in the do-
main of analyticity.1! We may consequently deduce that
the boundary points can be approached from inside along
many different directions and that the corresponding
limiting procedures nevertheless yield the same bound-
ary value of the function.

In Sec. 3B we use this freedom to express the weight
functions of the representation formulas in terms of the
form factors, It is shown that the procedure is unam-
biguous unless the field operators of the theory have
nonvanishing matrix elements between the vacuum state
and states with vanishing mass.

In Sec.4 we compute by an appropriate limit procedure
{according to the results in Sec. 2B) the form factors as

functionals of the weight functions.

In Sec. 5 the compatibility between the results of Sec. 3
and Sec. 4 is investigated and the integral equations are
derived.

In Sec. 6 some extensions and further conclusions are
presented.

Some of the details of the limiting procedures in Sec.4
and 5 are gathered in Appendices C and D,

2. SURVEY OF EARLIER RESULTS

A. Representation formulas for the absorptive part of the
vertex function

The analyticity properties which are proved in KW and

are mentioned in the Introduction can be explicitly seen
from the following representation-formula which is de-
rived in DII:
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A3G(Z,Z,,b5) = ("2-1? S Jdbydb(K1(Zy,Z;6550,,b,)
i

X 0(A3G)by,b,,bs)
+ KWMZy, 2556530, b3)0,(83G)(by, by, b3). (14)

The kernel functions K1 and K in Eq.{14) are given by
the formulas

KU Zy,Z5;b33b,b,) = f0°°dr oy + (r — b)) — b,))

8b, —7r)olr —by,)
s
Y Hba—Zi -2, )
r—Z)r —Z,) +7rby

<1 + 50, +Z, —2r)

6(b, —7)0lr — br)
bz‘Zz
W+ by —Z, —Z,
(’V—Zl)(T—Zz)+1’b3 ’
(15)

x <1 + 30, +Z,—2r)

Ku(ZpZz;bs;bl,bz)
1,1
= fo-fo dadp 8(1 — a — B)6lab, + 8b, — apbs)

y ([e(bl)e(— by) + 36(b,)6(b,)]
b, —2,

Z, — a?b,
aBby; —aZ, —pZ,

N [(6(~b,)ob,) +10(b,)6(b,)]
bz —Z,

Z, — B?by
apby —aZ, —BZ, [
(16)

The weight functions in the representation formula are
combinations of boundary values on the real axes of
A3G defined by

01{A3G) = A3Gb, + i€’ by + i€”,by)

+ A3Gb, — i€’ by — i€”,b3),

01,{83G) = A3Glby + de’, by — i€, by)

+ A5G, — i€’ by + i€, by).

(amn

We note especially that both the kernel functions K and
K1l are explicitly symmelric by the exchange of the in-
dices 1 and 2. It is further evident that the integrals
used in the definitions in Egs. {15) and (16) are only
formal, because of the occurrence of the ¢ functions
Concerning the singularity structure of the kernel func-
tions, it should be noted that there are singularities along
the real positive axes of both the Z variables (“the Z,
and Z, cuts,” respectively) with a similar interpreta-
tion as in connection with the Z; cut above. There are,
however, also singularities along two very different
surfaces, known as “anomalous cuts”, i.e.,

ACL: r—Z)wr—2,) +7rb3=0, r>0, (18)
ACI: opb; —aZ,—pZ, =0,
a>0,>0,a+8=1. (19)

Both these singularities occur in KW and also in per-
turbation-theoretical examples and are connected to

the singularities of the so-called triangle graph. As a
matter of fact, both kernel functions can be considered
as absorptive parts in the sense of Eq.(2) for particular

J. Math. Phys., Vol. 14, No. 1, January 1973

29

perturbation-theory functions.

As an example consider the perturbation-theory func-
tion F corresponding to the graph of Fig. 1. By explicit
calculation one finds12 [in the notation of Eq.(1) and
Fig. 1] for the derivative aF/dr

oF
6_7"— (Zl,Zz,ZS;bl,’V)
1

1
b, —Z,0r—Z,Yr —Z,) +7vZ,

= (const)

X [log(—7Z3) — loglyr — Z,) — loglr — Z,)].  (20)

By comparison with Eq. (15) it is easily seen that the
first term in the brackets [- - -] equals the absorptive
part of 3F/ar for a particular value of the “internal
mass” variable v =7(b,, b2,b3) according to the 6 func-
tions (except for a polynomial), There are similar con-
nections between the second term in Eq.(15) and the
graph obtained by the interchange of the indices 1 and 2
in Fig. 1. The terms in the expression for the kernel
function K11 are in the same way connected to the graphs
obtained from Fig.1 and the above-mentioned one by
exchanging the internal mass variables 0 and » (putting
r = abg or v = Bb,, respectively).

We further note that the “weight functions” o(A3G)
multiplying the kernel functions KI and K1I are partic-
ular combinations of boundary values of A;G on the
real axes of the variables, In particular one needs the
boundary values of A;G for such values of the variables
b1,b,,and by that the 6 functions in the integrals of Eq.
(15) or (16) can be fulfilled. The support properties of
the kernel functions in this way imply different restric-
tions on the integration variables, the “mass squares”
b..

i
For the subsequent discussion in this paper, it is useful
to introduce the following six real domains:

T{b1,b5,b3):
Dby, by,b3):

b;<0,6,>0,6,>0
b;> (b, +V6,)2,0,>0,6,>0 V'
jrk=l=j, (21)

It is easily seen that the domains are nonoverlapping
and further that inside these domains there are real
vectors p; in Lorentz space such that [cf. Eq. (1)]

3

20, =0,

j=1

—p2=b, j=1,23. (22)

Inside, e.g., the domain D; the vectors p, and p4 are
timelike and belong to the same light cone, etc.

In terms of the domains 7 and D the support properties

FIG.1. The perturbation theory graph related to the function in Eq. (20).
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of the kernel functions are the following:

The first term in Eq. (15) for the kernel function K1is
nonvanishing only inside T, and D,, while the second
term (found by interchanging the indices 1 and 2) is
nonvanishing inside 7} and D,.

The first term in the kernel function KII is nonvanishing
only inside T; and D3 while the second term is non-
vanishing inside 73 and D5.

We note in particular that the first and second term in
K1lhas overlapping support in the domain D4. The con-~
tribution to A3G has for symmetry reasons been attri-
buted with one half to each term.

In the derivation of the representation formula it is
explicitly assumed that the boundary values o(A3G) are
independent of the integration parameters », a, and 8.
This is indicated in Eq. (14) by the fact that these inte-
grals have been “extracted.” It will subsequently turn
out that this assumption is very important. The basis
behind the assumption is investigated in Sec.3 and
Appendix B. It is shown that there is a unique represen-
tation of the boundary values 0(A3G) in terms of limits
of the causal functions, and we may consequently deduce
that the assumption is fulfilled. For particular values
of the arguments (Z,, Z,, b,) there is another and some-
times more convenient way of representing the absorp-
tive part A,G. Thus, the following formula, which is
proved in DI, is valid if (Z,, Z,, b3) is on ACL:

A5G \Z1,Z,,by) = 215 [[dayda, 8(r — a;)br — a,) +7by)

a, +Z,—2r
x (G glay, ag, b3)6(ay— e BT

ay—2Z;
1 a2 + 22 —27
+GA(a1,a2,b3)9(a2—1’)7 ‘—“a‘z—_-z-— . (23)
2

In the same way the following formula is valid for
(Z,,Z,,b3) on ACIL:

836G 4(Z1,Z4,bs) = 271 [ da,da, 6(aa, + Ba; — apbs,)

X | Gglay,a,, bg)e(al)z;—g—Z:

+ GA(al’ ag:%)é)(@)ﬁ). (24)

The gquantities » [in Eq.(23)] and o, 8 [in Eq.(24)] are the
real positive numbers which parametrize the anomalous
cut surfaces in Egs. (18) and (19), respectively. They
should then be considered as being defined by Egs. (18)
and (19) as functions of (Z,,Z,,b3). The conditions that
the equations have solutions with the “right” reality and
positivity properties are then conditions on the coordi-
nates in order that Eqs.(23) and (24) be valid [i.e., that
(Z1,Z,,b3) be on ACI or ACII, respectively]. We note

in passing that outside the positive real axes,i.e., unless
both Z, and Z, are on the (normal) cut surfaces, there
is at most one solution for 7, o, and g with the required
properties. This is so despite the apparent quadratic
nature of the equations. The quantities G, and G, occur-
ring as weight functions in Egs, (23) and (24) are the form
factors and are defined precisely by Eqgs.(36) and (37)
below. It is obvious that the quantities A3G, and A5G 4
as defined by Egs.(23) and (24) depend explicitly upon
7, a,and 8. The formulas cannof be used to continue
A5G outside the surfaces ACI and ACII. We have indi-
cated the limitations by the extra indices » and a, 8.

The results are reached by a limiting procedure, when
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a Cauchy contour inside the domain of analyticity is
made to approach the anomalous cut at the same time
as the third variable of the vertex function approaches
the (normal) cut (i.e., the Z4 cut) (cf. DI)

We finally note that there is a certain assumed asymp-
totic behavior of the absorptive part A;G behind the
derivation of Eqs.(14), (23), (24). Thus the function A;G
is assumed to vanish in all direction around infinity
inside the analyticity domain, The modifications, which
are necessary in case this is not fulfilled (but A5G accor-
ding to the assumptions of Sec. 2A is at most poly-
nominally growing), have been gathered in Appendix A

(“ subtracted dispersion relations”).

The assumption that A;G vanishes when one of the argu-
ments approaches infinity “along the anomalous cut”
ACI is actually already incorporated in Eq,.(23). Thus
the following superconvergence relation or sum rule
may be derived from Eq.(23) in the limit Z, = ©, Z, ~v
(or Z, = ®,Z, = 7) (cf.SII and Ref. 7 for a direct proof
of this relation):

[fdada, 6(r — a))r — ay) + rb3)[Gylay, ay, b3)6la; —7)
- GA(al’ az, b3)9((12 —_ 'r)] = 0. (25)

According to the results in SII the same relation is also
valid when G5 and G, are replaced by the weight functions
01(A5G) above.

B. The vertex function and the operator matrix elements

The vertex function G has so far been considered as an
abstract entity equipped with the analyticity properties
proved in KW. We wish in this section briefly to touch
upon the connections between G and the matrix elements
of an underlying field theory. We will in particular
assume the existence of three scalar fields A, B, C
which are local and interact in such a way that the
Wightman axioms are fulfilled. For the physical inter-
pretation it is useful to assume asymptotic properties
admitting LSZ10 or reduction formalism7 though no
explicit use is made of this formalism. We will, however,
just as in KW, make extensive use of the causal (re-
tarded and advanced) functions and their well-known
representation formulas.

We will use the notations of SII and define, e.g., the re-
tarded function R, by the Fourier integral :

R, P, f3) =— fdxzdx3 exp(ipo(x, — xq) + iPalxg — x4)]

X v\ Xy —xp5%, — x3).  (26)

The weight function 7, in the Fourier transform is

known as the vacuum expectation value of the retarded
commutator.”19 We will only need the following prop-
erties (for explicit formulas, cf., e.g., Appendix B, SII):

(i) The retarded commutator is a sum of operator pro-
ducts of A, B, and C multiplied in different orders
and with step functions in time.

(ii) Due to the assumed locality of the field theory,r,
is essentially!3 a Lorentz scalar and vanishes un-
less the field points of B and C are retarded (¢“be-
fore”) the field point of the field A.

Due to the support properties of 7,, Eq. (26) exhibits the
retarded function R, as an analytic function of the vec-
tors p, and p3 when the imaginary parts of the vectors
belong to the forward light cones (V+), Due to the
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Lorentz covariance of the theory the function R , only
depends upon the Lorentz scalar variables, i.e., the
variables of Eq. (1). We now define the relation between
the field operators and the vertex function G by

R, =G. 27
Then it is possible to represent G inside the analyticity
domain of R, by Eq. (26).

It is also possible to define”10 retarded functions R
and R in which the fields B and C are distinguished just
like the field A in Eq. (26). Further we may define the
advanced functions A ,, A ;, A . essentially be reversing
the sign of the arguments in the step functions for the
respective Fourier weight functions. All these functions
exhibit analyticity properties and coincide in a well~
known way in a common region.3.74 By the uniqueness
of analytic continuation® they are then all equal to the
vertex function G and can be used as representation
formulas for it inside their regions of analyticity.

We will now make use of the different retarded and ad-
vanced functions to express the absorptive part
A5G(Z,,Z,,b,) in terms of the matrix elements of the
operators. To that end we note that the energy—momen-
tum vector p,, corresponding to the mass square b4
according to Eq. (1) and above, will because of the posi-
tivity of b5 be a timelike vector. We will for definiteness
choose it to belong to the forward light-cone remember-
ing that due to the inherent CPT symmetry in a field
theory fulfilling the Wightman axioms4 this choice im-
plies no loss of generality. The different limiting situa-
tions in Eq.{2) can then be achieved by choosing the
limiting imaginary part of the vector p; to approach the
origin inside a definite lightcone,i.e.,

by xie=— (p, + ikg)2, kzec V-0, (28)
Then, for the case when the imaginary part of the vec-
tor p, belongs to V* [note that, due to Eq. (1), Imp, =
ky =—ky — ky = — ky € V-], the absorptive part A,G is
given by

A5G =R, (P, p3) — Aglpy, ). (29)
Insertion of the representation formulas for B, and Ay
like the one in Eq.(26) and use of the explicit expressions
for 7, and a4 then results in the following integral {cf.
SI):

3
Jazx exp<z'?1p}xj)(019(12)
x [C(x3), [A(x,), B(x,)]]10).

We have used the shorthand notation 6(12) = 8(x; — x,).
The step function with a vector argument means that
the vector belongs to V*. We note that the argument of
the field C does not occur inside the step functions, and
we can consequently perform the integral over x5 by
straightforward means. Insertion of a complete set of
states |») with energy-momentum vectors g, and use of
translation invariance®2.4 results in

(30)

ASlezer = (20)4 [dx exp(ifyx, + ibyx,)

b IZ})ﬁ(Pg — 5, X016(12)[B(x,)A(x,)][n)Xn|Cl0).  (31)

We have in Eq. (31) neglected one term containing a &
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function with the vector argument (p; + p,). Due to the
spectrum assumptions and our assumption above that
p3 € V*this vector can never vanish and the term will
consequently give no contribution.

In that way the absorptive part A;G is given by the ma-
trix element of a retarded commutator between the
vacuum state |0) and a state |») with definite energy—
momentum vector and the quantum numbers of the field

C{z|Ci0) + 0).
There is a similar formula valid when the imaginary
part of p, belongs to V=
A3G|k2eV' = (2m)% fdx explif x, + i ,x,)
XIZ;' 0(p3 — p, M0[6(21)[A(x,), B(x,)]|m)n|Cl0). (32)
n

We note in particular that the limit

£(A36) Zéii%[A?.G‘kzew‘— Asc‘ kzey—] (33)

can be expressed as
£(43G) = (2n)4 [dx, explipyxy + ipyx,)
x 'Z))(j(pa — 0, X0|[B(x,), A(x,)][n)n|C[0). (34)

The quantity £{A3G) is thus the Fourier transform of a
matrix element which does »nof contain any step functions
in time,
Introducing another complete set of states |m) with
energy—momentum vectors p,_, we can perform the inte-
gral in Eq, (34) in the same way as in connection with
Eq.(31). The result is
L8360y, 03, 03) = (2m)20(p3)[0(— p,)G 4 p3 — p3 — 1§
— 8(=p,)Gp— p3 —p§ — p3)].  (35)
The quantities G, and G, introduced in Eq. (35), are given
by

Gy~ (py + p3)2,— p3,—p3) = (2n)6 ”Z% >
[6(p3)6(=p)6(ps ~p, )00, +1,,)
x{0|Bm){m |A |n)n|C|0)
+ 0(—=p3)0(p)o(ps +p,)6(py — )

X {0[C |n)(n|A m)(m |B|0), (36)

Ggl—p%,— (py + p3)2,—p3)

= (2m)6 E. >[e<;>3,)e<~p1>6<1>3—p,,)ﬁ(m+1>m>

X {0|A lm)Gm |B |n)(n|C|0)

+ 0(—p3)8(p)8(ps + p,)0(py —1,,)

X (0[C [n)n|B lm)m |A0)]. (37)
The definitions of G, and G in Egs. (36) and (37) have
been chosen in an explicitly CPT symmetric way. These
quantities will in the following be referred to as “form
factors” of the fields A and B, respectively.

It can be seen from the definition that the form factor
G, is essentially the matrix element of the operator A
between states with the quantum numbers of the opera-
tors B and C and with well-defined energy—momentum



32 Bo Andersson: Locality conditions on form factors

vectors. The notation is chosen so that the vectors p,
Dgrand p; (with mass squares b,, b,, and b4, respective-
lyz) fulfilling energy—momentum conservation according
to Eq. (22) always refer to states with the quantum num-
bers of the fields A, B, and C, respectively.

The support-properties of the form factors mirrors

the mass spectrum of the theory. We further note that
the form factor Gglb,,b,,b,) is nonvanishing only inside
the regions D, (b,,b,,b3),D3(b,,b,,b5),and T,(b,,b,,b5)
in the notations of Sec. 2A. In the same way the support
of G,(b,,b,,b3) is contained in the regions D,(b,,b,,b5)
D;by,b,,b5),and Ty(b,,b,,b5). We note especially that
in the common region of support D;(b;,b,,b5) only the
difference [Gylby,b,,b5) — G,(by,b,,b3)] can be deter-
mined from JZ(ASGf {cf. Sec. 6).

3. THE BOUNDARY VALUES OF THE ABSORPTIVE
PART IN TERMS OF THE FORM FACTORS

A. On the approach to the boundary regions

In this section we will discuss the appearance of the do-
main of analyticity for the vertex function in the neigh-
borhood of the singularity surfaces. We will in particular
employ the connection between the absorptive part A;G
of the vertex function and the retarded and advanced
functions from Egs. (31) and (32). Our goal is to show!!
that each point in the integration region in Eq. (14) is
surrounded by a complex neighborhood belonging to the
domain of analyticity. It is then possible to reach the
boundary points “from inside” along many different and
equivalent directions,

We will define “the directions of approach” to be the
ratio (¢’/e”) between the limiting imaginary parts of

the arguments in the boundary value A,G(b, + i€,

b, + i€”,b,). By the same methods that are employed

in Sec, 2C ?cf. the similar explicit constructions in SI,
SII, and DI} we can express this boundary value in terms
of boundary values of the retarded and advanced func-
tions. The limit when €’ and ¢” approaches zero corres-
ponds in that way to the limit when the imaginary part
k, approaches the zero vector inside a definite light
cone in accordance with Egs. (31) and (32). The ratio
(e'/€”) is then connected to the coordinates of the bound-
ary point, i.e., (b5, by, b3), and the limiting direction of
the vector k,. Equivalence between {wo directions of
approach means that there are vectors k, belonging to

a definite light cone so¢ that both the ratios can be attain-
ed. Some details of the explicit constructions have been
gathered in Appendix B. We have in particular investi-
gated the case of two-dimensional space-time. Condi-
tions which are sufficient for that case are certainly also
sufficient for four-dimensional space-time, where the
“freedom of approach” is correspondingly larger. The
resulting sufficient conditions on the ratio €’/¢” such
that the boundary values o{A3;G) should be expressible

in terms of advanced and retarded functions are the
following:

Inside the regions D,(by,b,,b5) and D,(b,,b,,03) (which
according to the investigation in the end of Sec.2B are
connected to the anomalous cut ACI) the ratio €'/¢”
must be a nonzero, finite, and positive number. Inside
the region D4(b,,b,,b3) (in the same way connected to
the anomalous cut ACII) the ratio €*/¢” must be a non-
zero, finite, and negative number. Inside the regions

Ty and 7, there are no restrictions on the ratio €' f€”.
Inside, e.g., the region T,(b,,b,,b3) it is, however, neces-
sary that €” (the limiting imaginary part of Z,) has a
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definite sign. In the same way inside T, lb,, b,,b5) the
sign of €’ is restricted.

The difference between the regions 7 and D is to be ex~
pected because in the D regions both b, and b, are
positive real numbers, while in the T regions one of
them is negative. The difference between the boundary
value above and below the real axis is only of interest
in case there are singularities on the axis. This is the
case along the (normal) cut surfaces,i.e., only along
the positive real axes.

We may then conclude that, subject to the restrictions
above, there is a great freedom of choice in defining the
limiting procedure for ¢(A;G) in Eq.(17). The resulting
boundary values are in “the allowed cases” unique in
the same sense as the limits of the retarded and ad-
vanced functions are unique, i.e., in a distribution-
theoretical sense.

B. The boundary values as functionals of the form factors

In this section we will employ the results of Sec, 34, i.e.,
the fact that the boundary values which occur in Eq. (17)
can be equivalently attained along any one of many dif-
ferent directions. We will in particular use this freedom
to compute the boundary value of A;G on the intersection
of the real axes and the anomalous cuts as a boundary
value “along” the anomalous cut surface. Thus any
boundary point which occurs in the integration range

of Eq. (14) [for ¢;(A,G)] can be reached “along” the
anomalous cut surface in the following way.

Consider an arbitrary but fixed point (b,,5,, b,) such

that,
b j real,

7o =%y +by—by +VAlby,b,,05)) >0,
Mby,byyby) = b3 + b3 + b3 — 2b1b, — 2bybs — 2bybs.

(38)
This condition is sufficient that the point (b,,b,,55) is
on the intersection of the real axes and ACI with the
parameter » = Y.

This point can be reached from any complex point
(Z1,Z,,b3) with

{i.e.,(Z,Z,,b,) is on ACI] by the prescription Z; = b,.
In that way a particular boundary value A;G(b, + ie’,
b, + ie”,bg) can be defined by

lim AsG(Zl,vo + ’Vobs/(?’o — Zl)’ b3)

zZ b
1 = lim A,G, (Zl,Zz,bg).
2,b, o

(40)

[The notation 83G, is introduced in Eq. {23).]

Note that the limiting imaginary parts €’ and ¢” have
the same sign and in particular that

€'/e€" =og—by)2/rgbs. (41)
According to the result of Sec. 3A all “directions of
approach” e’/e” are equivalent at least if €’/¢” is finite
and nonzero. Consequently the limit according to Eq.
(40) is well defined except possibly when
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i) ro=by or b;=w
(ii) by =0,
(i) » = 0.

The first solution corresponds to asymptotic values of
one of the arguments b, or b,. The assumed bounded-
ness properties of A;G excludes a singular contribution
to Eq. (14) in that case.

The second situation may occur in case there are states
in the theory with the quantum numbers of the C-field
and vanishing mass [cf, Eq. (31}]. The third situation
may correspond to a more singular situation and Eq. (23)
has no meaning in that case. It is seen, however, that
the point » = 0 only contributes to a low-dimensional
part of the actual integral in Eq. (14), There are even-
tual difficulties only if A3G(by + i€', by + i€”,bs) is sin-
gular at one of the points &; = 0 or b, = 0. In case this
singularity is of integrable type in the mass variable,
it is possible to define the limiting situation in Eq. (40)
and (iii) by
lim lim A5G, (Z,,Z,,b,). (42)
750 Z‘\—+b1 0

By looking back upon the original derivation of the repre-
sentation formula in DI, it is clear that this interpre-
tation is the correct one.

If the singularity at the origin in mass space is of non-
integrable type (pole type etc.) we must interpret the
difficulty as connected to zero mass states with the quan-
tum numbers of the A- and C-field (e.g.,“infrared di-
vergences”). For such a situation it is necessary to
modify the representation formulas and explicitly exhibit
such contributions. For the remainder the prescription
of Eq. {42} is valid (cf Sec. 6).

There are similar difficulties associated with a limit
along the surface ACII for the quantity O'H(A3G). Thus
Eq.{(24) has no meaning in case ¢ = 0 or 8§ = 0 and
modifications similar to the case (iii) above may be
necessary.

It can be seen, however, that the possible difficulties in
using Eqs. (23) and (24) to compute the boundary values
0;{A43G) and 0, (A4G) are only connected to the eventual
appearance of zero-mass states in the theory.

Neglecting such possibilities we may write for the bound-
ary values ¢,(A,G) and 0,,(A5G) in Egs. (17):
0,(83G,) = 0,,(b,,by,b3) = 471 [[da,da,

X 6(0r —aq)lr — az) + rbg)(GB(al, 5,b5)
ta, +b, — 2n)
z\dy 1
X gla; —
i{a, + b, — 2r)
+ GA(al,az,bS)G(az —'T) L%a;':i@r‘“)
4

. . 17 “‘ali
= 4ai [fda,da, 5((r — a,)r — a,) + rb3) @ =,
% [Ggla,y, ay, az)olay — ) + Gylay, ay, a3)6(r — ay)],
(43)

011(83Gep) = 011,01, 82,b3) = 473 [[da,da,

x §{aa, +Ba; — a3b3)<GB(a1,a2,b3)
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o
x 8(a,) @ —5y," Galay, az,bs)e(“z)@—_éb—zr>

4
= 4i [fdayda, 6 (ac, + pay — apby) (725~
4

x[Gplay, a,03) — Gylay, a, b3)]. (44)
In the second line of Eq. (43) we have made use of the
superconvergence relation in Eq. {(25) and the fact that
both (ay, ay, b3) and (b4, b,,b3) are on ACI with the same
parameter 7,

We note that the actual integration region for the argu-
ments (a,, 45, b3) of the form factors G, and G, in Eq. (43)
are for the first term the regions D,{ay, a,, b3) and
T,la,, a5, b3) and for the second term D,la,, @,,b4) and
T,la,,a,,b4). Thus the common region of support
Djlay, ay, b3) (cf. Sec. 2C and Sec. 6) does not occur in
Eq.(43). In the second line of Eq. (44) we have made use
of the fact that both (a,, a,, b3) and (by, b,,b3) are on
ACIH with the same parameters ¢ and 8. The actual inte-
gration region in Eq.(44) is T,(a,, a,, b3) (for G,) and
Tylay, ay,b5) (for Gp) while in the common region,
Djlay,a,,bs) only the difference (G; — G,) oceurs.

4. THE FORM FACTORS AS LIMITS OF THE
REPRESENTATION FORMULA FOR THE
ABSORPTIVE PART

In section 2B the form factors G, and G are defined as
particular limits of the absorptive part A,G [cf. Egs.
(33)-(35)].

In this section the corresponding limits will be computed
from the representation formula for 4,G in Eq. (14), In

that way the form factors G, and G, will be expressed as
functionals of the boundary values 0;(A;G) and 0,,{A,G).

The procedure should be contrasted to the results of the
foregoing section in which the boundary values o(A;G)
are expressed in terms of the form factors, The com-~
patibility of the results is investigated in Sec. 5.

Some details of the limiting procedure have been gather-
ed in Appendix C. The results for the quantities £L(K7)
and £(K1I) defined by Eq. {33) are:

£(KY = [[dc,dc, blcy + p3)6lc, + p2)UL + 13),

(K1) = [fdc,dec, blc, + p3olc, + p2AR + 111 5)
The quantities [ in Eq, (45) are defined by
)
=27 fdr 6G) (b, + by — by — 2r)6(r — b)) — by) + 7by)
G(bl"_cl) 6(b2 *Cz)
X (e(bl-~ ?’)e(*‘pl)m + 8lby—7)elp,) m
{46)
B = 2nifdr 60)6(tr — b,)r — b,) + 7b3)6(lr — ¢,)
X r — cy) + 7bg) €le; — ca)VAlg, €1, ¢2) A, (47)

1 by + ¢y —2r) by + ¢y — 2)

1= — Y —

Al =6(b, 7‘)2"75*1—:?1'):‘4'9(1)2 T)W
1 1 1

by rI((b-l—cl)p‘“Z'bl— )

p r
-1 1
p 2by—7 )

I

l
&
b3
-
ey
o
N
|
i3]
™
et
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1= 27i ffdadp 5(1 — o — B)6(a)8(@)slab, + Bb, — apb,)

x [[e(bl)e(— by) +2006,)0(6,)]e(—p,)

bl 6(b1 —_ Cl)
x (-—a— — O’b3>@2__—czg + {9(—61)9(1)2)

+ ga(bl)o(bz)]e(pz)(%% - Bbg)%“:%_—c%—],

131 = 2ni f[dadp 5(1 — o — B)6(a)6(B)d(ab, + Bb, — apb,)
X 8(8cy + acy — apby VAL, g, co) AL,
o
=

A =[6(6)0(=b5) + 36(61)6(,)] Gy
P

— [0~ b,)8(by) + ge(bl)e(bz>16;é5;y_
4

2 B
- (bl _Cl)—p— (bg - Cz)p *

Several different expressions have been given for the
quantities A, in Egs.(47) and (49). The equivalance sign
= between the expressions for, e.g., A,! means that the
expressions coincide if [as the 6 functions multiplying
A,1lin Eq.(47) imply] the points (b,,b,,b3) and (c,, €5, b3)
are both on the anomalous cut ACI with the same para-
meter . The same goes for the equivalence sign for

A, U for points on ACII. These results should be com-
pared to the second lines of Egs. (43) and (44).

With the definitions above it is possible to write for the
limit
L£(a56) = (2m0)2 [Jde,de, 65(p2 + ¢,1)8(p3 + c;)
x [fabydb,{[15(cy, eq3 b330, 85)
+ 14 (c1,€05b3351,05)] 05(836) b1, b5, 55)
+ [1f¥ey, €93 b55 01, 0,) + 1iey, €55035D4,05)]
X 0;{A3G) by, b5,b3)} (50)
5. CONSISTENCY RELATIONS

In this section we will investigate the compatibility be-
tween the formulas of Sec. 3B [expressing the boundary
values 0{(A,G) in terms of the form factors G, and G,]

and Sec. 4 [expressing the form factors in terms of
O’(AgG}].

To that end, we note the following distribution equalities:
72 [ffardb b, 6(r — b))l — by) + 7b5)
x 8(tr — ¢y )r — cy) + 7b3)

la, —7)

X 8(br — a)br — a,) + 753)@_;___3_1_5;

x 8la, —7) by =7l

! (bl - Cljp

=—[Abg, cq, €3)]" V2 8la; — c4)8(ay — cy)

X (2D, (c1, €2,83)) + x(Thlcy, €5,03)],

7’_2fffd"'db1dbz 5(tr —by)r —b,) +7bsy)

X ((r — c,)r — ¢,) + vby)

(48)

49)

6lr)

(51)

x 6(r — ay)or — ay) + 763)%;%
?

}bl — 7|
1

x 8lr — aq) m 6(r)
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= [A'(bS’ cl) cz)]—l/z 5(01 —_ Cl)é(ag - cz)
x [2X(D2(cls Cay bs)) + X(T1(Cp 62,63))], (52)
-2 [f[facdgdbdb, 6(1 — & — B)élac, + B, — apbs)
x8laby + Bby — apbs) 6laa, + Ba; — apbs)
az
X (b1 — cl)p(al - bl)’pe(al)e(a)e(ﬁ)
=— [Albg, cq, €,)]1/28(ay — c,)0(ay — c,)
X {2X(D3(C1’ Coy b3)) + X(Tz(cp Coy b3))]; (53)
w2 [f[fdadgab db, 6(1 —a —p)
x 8lac, + Bcy — apbg)olab, + b, — apb,)
X blaay + Ba; — apby)
a2
X ®; —cy)fa; — bJPG(a2)e(a)e(ﬁ)
=—[Ab3, c1,¢5)]2208(a, ~ ¢5)0la; — c,)
X [2X(D3(C1’ Cos b3)) + X(Tl(cl’ Cz, bg))]- (54)

We have in Egs. (51)-(54) introduced the notation y{D)
and x(T), respectively, for the characteristic functions of
the regions IV and T of Sec.2C. The characteristic func-
tion is defined to be equal to 1 in the region in question
and to vanish outside it. The proofs of Eqs. (51)~(54) are
straightforward and will be given in Appendix D.

We now make use of these results to compute the follow-
ing integrals from Eq.(50):

@n2)-2 [ b db, 1,1(c,, cp30458,,b,)0,, By, by, bs)
= 27)2{G,lcy, 5, b3)[x(Dy) + 2x(T )]
- GB(Cv Cay bS)[X(Dl) + %X(TZ)]}:

(27i)-2 [fdb b, ey, €35D3501,b5)011,(b1, b5, b5)
= (21)2{G4(cy, €3, b3)3 X\ T1) — Ggley, €2, b3)5x(T2)
+ [Galey, €3, b3) — Gyley, €3, b3)]x(D5)} (56)

To reach the results in the right-hand sides of Egs. (55)
and (56), we use Eqgs. (47) and (49) for I,! and [,i! (with
appropriate choice of A,) and the second lines of Egs.
(43) and (44) for o, and 0, .. We have further neglect-
ed all eventual contributions from zero-mass states

in accordance with the discussion in Sec. 3B.

We now sum the contributions in Egs. (55) and (56) and
compare the results to the defining Eq. (35) for G, and
Gg. The support properties of GA(GB) (cf.the discussion
in Sec. 2B) imply that the sum of the characteristic func-
tions multiplying G,(G,) in Egs. (55) and (56) is equal to
the characteristic function of the support of GA(GB) The
regions 7 and D do not overlap and eventual difficulties
are then only connected to common boundary regions,
i.e., when one (or both) c;, = j = 1, 2, vanish (“zero-
mass states”). Consequently, we deduce that the sum of
the contributions from the terms containing [/, and

1,1 in Eq. (50} are sufficient to aceount for the whole
lHmit £{A46G) in Eq. (35).

In that way we have shown that Egs. (43) and (44) (de-
fining the boundary values ¢ and o in terms of the
form factors) is compatible with Egs. (35) and (50) de-
fining the form factors in terms of the boundary values)
iff the remaining contributions to Eq. (50} vanish:

ffdb 1402y, €5 83304,05)0,(b,, b5, b3)
+ ey, €93 b33 b4,b5)0,,{bq, by,b3)) = 0.

(55)

(67)
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This is indeed the case under the same conditions as we
assumed in order to derive the representation formula
in DII. In order to prove it, we rewrite Eq. (57) in the
following way:

. G(bl — C'l)
ffdbldb2<€( py) (—b—z‘:—c—z-)—p r101,05)

8lb, — c,) )
+
E(pz)m yolb1,b5)).  (56)
The quantities in Eq. (58) are then defined by

v;=vitylh =12
v} = Jar 60) (b, + by — by — 20)6(r — b,)lr —b,) + 7b3)
X 6by — 7oy, (59)
y] = [Jdadp 6(a)6(@)6(1 — & — p)8lab, + Bb, — aBd;)
X (by/a —abj)[6(by)6(—by) + 36(b,)6(b5)]01

The corresponding quantities y,! and y,1I can be found
from Eq.(59) by exchanging the indices 1 and 2 (as well
as the integration variables of @ and 8). We will now
carry out the 7 integral and the ¢—g integrals in Eq.(59)
and show that y, vanishes identically, We will then rely
upon the results of Sec. 3A and Appendix B that the
boundary values o and o, are (almost) independent of
the limit procedure and can be given in terms of limits
of the retarded and advanced functions. In particular
they only depend upon the boundary point (44, 5,,b4) and
do not depend upon 7, o, and 8. These conditions were
also used in the derivation of the representation formula
Eq.(14), in DII.

Concerning the support properties of y,! and y; ! we
conclude (cf. the discussion of the support properties of
the kernel functions KT and K!! in Sec. 2B and also
Appendix D) that

(i) inside the region D,(by,b,,b3) only y, I may be
nonvanishing,

(ii) inside the region D5(b, b,, b3) only y, I may be
nonvanishing,

(iii) inside the region T,{b1,b,,b3), {y;1+ y,11) may be
nonvanishing.

Inside the region D, there are two roots r, contributing
from the 6 function to the 7 integral:
r¥. >0, 27, +by—0by—by=xvVAbq,b,,bs). (60)

Thus the contribution to y, inside D, according to (i)
and Eq.(59) is

le)(olr_ - UIr ) =0. (61)

In the same way, inside the region D there are two
roots ¢, contributing and

0<a,=Q@b3) by +b; —by £VAlbs,0,,0,)] < 1,
by/a,— a,by =% YAlb3, by, b,). (62)

The contribution to y, inside D; is then according to (ii)
and Eqg. (59):
xD3loy, — oy ) =0. (63)

Finally inside the region T, only the roots », and o _ in
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Eqgs. (60) and (62) will give any contribution to y,. The
sum is
X(To)oy, — 0y, ) = x(T2)[83G(by +i€’, by — i€’ by)
+ A3(5(b1 —-+ie’, b, + i€’y by)
— AsG(b + i€’ b, + i€’ b3)
— A3G(by —i€’, by, — i€", bg)] = 0. (64)

The vanishing of the left-hand side of Eq. (64) comes
about not only because the boundary values are inde-
pendent of & and 7 but also from the fact that inside
the region T, (where b, < 0) the sign of the imaginary
part of the second argument is of no significance.

The conditions in Egs. (61) and (64) have immediate
counterparts in conditions for the vanishing of the quan-
tity yo:

x(Da)oy, —o1,) =0, (65)

x(Tylo, =014y =0, (66)

In all these equations the quantities oy, and o, are
defined by Egs. (43) and (44). Consequently Eqgs. (61)

and (63)-(66) are actually conditions on the form factors
G, and G in order that the formalism should be con-
sistent,

In the next section we will further discuss this inter-
pretation of the results. We will end this section by

the following remarks. As of now we have only dis-
cussed requirements on the form factors G, and G, from
the properties of the absorptive part A;G. It is evident
that a completely similar discussion can be carried
through for the absorptive parts A;G and A,G. It should
be noted, however, that such an investigation has a direct
bearing on the form factors G, and G,

In connection with the absorptive part A;G we may de-
fine a limit like the one in Eq.(33). We will thereby get
a formula for the form factors G and G, with G defined
by
Gc(_ p%y_pzy'_ (pl +p2)2)

=@2me¢ 2 [6(p)o(—p,)0(p; —2,)

In>lm>

X8(py + p,, X0 B hn)m ICln)nlA l0)

+0(—p)0(py)o(py +p,)
X 8(py —p )0 Alm{n|Chn){m |B [0)]. (67)

We will finally end up with a set of integral equations
like the ones in Eqs. (25), (61) and (63)~(66) but this time
involving (the difference of) the form factors (G -G p).

An investigation of A,G results in conditions on (G,-G,).
It is evident that the difference (G4~G,) (which effective-
ly occurs in all the integral equations derive so far)
cannot be discussed independent of the “new” equations
because

Gp— G,= (Gg— Gy + (G, — G,). (68)
The “new” equations do, however, serve as a precise
definition of G and G, in “the overlap region” D, where
only the difference can be defined by Eq. (33). But even
outside the region D5 will the form factors G, and Gy in
general be restricted by the analyticity properties of the
absorptive parts A,;G and A,G. The reason is, of course,
that there is one unique vertex function G(Z, Z,, Z3)
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and the three quantities A,G, A,G, and A5G are different
boundary values of the function G. The “new” equations
can easily be found from Egs. (25), (61), and (63)-(66) by
permutation of indices,

6. CONCLUDING REMARKS

(1) In section 5 we have derived a set of conditions on
the form factors G,, G, and G, which will guarantee the
existence and uniqueness of the absorptive parts A,G,
AyG, and A5G of the vertex functions.

If the form factors G, and Gy fulfill the integral equations
in Egs. (25), (61), and (63)—(66), then we may compute

the weight functions o, and o,; according to Eqs. (43) and
(44). We may afterwards insert these expressions in the
representation formula Eq. (14) and compute the ab~
sorptive A;G. The resulting analytic function A;G will
then

(i) exhibit the analyticity properties required by KW,

(ii) bhave the “input” form factors as physical limits
according to Eq.(35),

(iii) vanish in asymptotic directions.

The property (i) is true for any weight functions g, and
0;; (such that the integrals converge) and (iii) is a
boundedness condition. The property (ii). is, however,
a uniqueness condition on the form factors.

If the form factors G, and G, also fulfill the permuted
equations involving G, then we may in the same way
construct the absorptive parts A;G and A,G. We are
then also assured that properties (i)-(iii) are fulfilled
for these functions.

The analyticity properties of KW do imply that the phys-
ical assumptions (1)—(3) in the Introduction are ful-
filled for the appropriate matrix elements. Thus the
analyticity properties of the absorptive part A;G, which
are implied by the representation formula, Eq. (14), do
result in the vanishing of the quantity M outside the
light-conel14;

M =2 Ol[ALxy), Blp))mXnICI00(p3 = p,).  (69)

n>

Therefore, the matrix element M, which is the Fourier
transform of £(A5G) [cf. Eq. (34)] fulfills the locality
conditions if the form factors G, and Gy fulfill the inte-
gral equations. We may consequently interpret Egs.
(25), (61), (63)—(66) as a set of sufficient conditions on
the form factors so that the appropriate matrix elements
of the field theory fulfill the physical assumptions,as
well as the boundedness assumptions which are neces-
sary in order that the representation formulas should
make sense.

(2) We have during the investigation repeatedly changed
the orders of integrations and performed certain limits
inside the occurring integrals without further justifica-
tion. All such formal operations can without doubt be
discussed in a more rigorous mathematical setting. We
will, however, not carry out any such detailed discussions
but be satisfied with a few remarks to supplement those
already made in due places of the main text.

The difficulties which are due to the unboundedness of
some of the occurring integration ranges can always be
solved along the lines indicated in Appendix A (“sub-
tracted dispersion relations”) as long as the main as-
sumption on polynomial boundedness of the vertex func-
tion is fulfilled. The integral equations then involve the
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generalized form-factors g7 and g% defined by [ef.
eqs. (A4)-(A6) in Appendix A] (z, < 0,2, < 0)

. 2 m a\~?
gRmlby,by,b33Z1,2Z,) = <5ZI> <3*Z—2—\)
GA(bl’ b2,b3) _GA(Zl’bZ’bB)
by =210y —Z5) ’

9 \"/ 9
gg"'"tbl,bz,ba;zl,%):(ﬁ;) <52—2) (70)
Gglby,bg,b3) — Gglbq,Z,, by)
(bl—Zl)(bz_Zz)

It should also be understood that in case there are sin~
gularities in the finite part of the integration domains

a similar procedure can sometimes by developed. Thus,
in case there is a simple pole at the origin, in one of

the variables, e.g., Z; (i.e.,there is a state with vanish-
ing mass in the theory with the quantum numbers of the
field A), then we may investigate the generalized absorp-
tive part A,G’ defined by (z, < 0)

83G'(Z,2,,b552,) = [2,/(Z, —2,)]

x[83G(Z,,Z,,b3) — 85G(z4, Z5,b3)].  (11)
Equation (71) will result in the following generalized
form factors g'; and g’

g'5b,b0,035Z1) = [b,/(by — Z1)]Gyb1,b5,b53),
g'alby, by, 05 24)

=[b1/(0) = Z)[Galb1, 83, b3) — Gle s, 85,83)]  (72)
It is clear that the singular contribution from G, at
b, = 0 in an integral like Eq. (43) or Eq.(44) for» = 0

or @ = 0 is not present in g’,.

The dispersion relations can then be applied to the
generalized function A3;G’. We note that “the subtrac-
tion” at the point z, leads to the same asymptotic pro-
perties. The actual absorptive part A5G can be recover-
ed by

A83G (Z4,Z,,b3) = A3Glzy,Z,,b3)

+ (21— 21)/2,]83G"(Z,2,,b3;29).

In Eq.(73) the pole term is explicitly exhibited. The
generalization to other situations should be obvious.

(73)

(3) The possibility above is of some interest in the light
of the results of the investigation in Sec. 3 on “the ap-~
proach to the boundary.” It is shown that, unless there
are zero-mass states in the theory, the limit procedure
used in this paper is unique.

The integral equations (61), (63)—(66), which are derived
in Sec.5 can be interpreted as requirements of just this
uniqueness. Thus we have exploited the fact that it is
possible to approach each point on the distinguished
boundary along different divections and still get the same
boundary value of the vertex function. In particular

it is possible to choose as direction of approach, direc-
tions “along” the singularity-surfaces, called the anoma-
lous cuts. All points on the distinguished boundary can
as a matter of fact be reached in that way from fwo
different directions. The integral equations are then
requirements thal these two different limits should be
equal,
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Consequently, in a theory with appropriate boundedness

properties of the vertex function [Eq. (25)] and no zero-

mass states, the conditions on the integral equations are
also necessary conditions.

In case the boundedness requirements are not fulfilled
but the vertex function is allowed to grow at most poly-
nomially at infinity and (or) as an inverse power around
the origin of mass space, then it is possible to define
generalized form factors according to the remark (2)
above. The conditions on these generalized form factors
are correspondingly less restrictive.

(4) The formulation of the integral equation in Egs. (61),
(63)—(66) brings out the formal symmetry between the
occurring mass variables, For practical computation it
might be useful to reformulate the equations in terms of
other variables. We will here briefly outline such a re-
formulation of Eq. (64).

A convenient set of variables for Eq. (64) [which is valid
inside the domain T,(b,, b,,b3)] is (by,7 =7,,b3). We
note the following relation between the parameter a_ = «
and 7 which follows from the definitions in Egs. (60) and
(62):

If we use the second line of Eq.(44) as definition for
010 We get with this result inserted

. da, B8
Otra = 47”f(a1 =), [Galaypby — 581, 03)

B
— Gulapbg — o % b3)]

= 4ni [[da,da, (Cf—?%b:);()([(az —= 7)oy —7) + rby]

+ (@, —b)r— by + 530Gz — Gp). (75)

For the remaining quantity in Eq. (64) we get from Eq.
(43):

. b1 -7 1
UI‘r = 4mffda1d02 <(m + —2—>

x8{lag —7)ay —7) + rb3)(Gz — G

= 41riffda1daz<b1 — ) o((ay —7)
b

a,—by

X(ay —7) + rb3) Gy — G,). (76)

Just as in connection with the two different versions of
Eq. (43) we have made use of the fact that (b, b,,b3)
and (a4, @y, b3) are on ACI with the same parameter 7.
Note that, in going from the first to the second line of
Eq.(76), we have also made use of the sum rule in Eq.
(25).

Consequently, we may write Eq. (64) in terms of the
variables (b,,7,b3) as
1
0= (b, —7)fJda da olay — 7)oy —7) +7b
1 f f 1442 (a, _"b"l)‘P[ 2 1 3

+ (al - bl)(r + b3 - bl)) - 5((“2 - r)(al —7') + 7.b3)

X (Gg — Gl (77)
The region T, is in terms of the variables (bv 7, bs):

0<7r<b,<7+bg (78)
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Equation (77} contains a few features which are generally
true for the integral equations:

(i) Only the difference of the form factors (G, — Gp)
occur (cf.the remarks in Sec. 24),

(ii) The principal value prescription is actually not
necessary because in the points where the integra-
tion variable a, equals b, the arguments in the 6
functions are equal too.

The remaining equations in Sec. 5 can also be reformu-
lated into formulas similar to Egq. (77).

The simplification is bought, however, at the price of
some obvious inconvenience in Eq. (77). Thus, the for-
mula must be interpreted by appropriate limit procedures
when the parameter b, approaches 7, and the points

a, =7 and a, = ¥ of the integration range.

(5) The corresponding relation for the two-point func-
tion is the well-known requirement of “weak local com~
mutativity.” This means that the two spectral functions
G,p and Gy, defined by

G,pl—p2) = IZ) 8(p —p ,,KOIA [m)m BI0),

79

Gpal—p2) = % o(p — p ,,X0|B bm){(m | A 10) a9
must fulfill

G pla) — Gyala) = 0. (80)

The conditions for the three point function, Eq. (73), which
we have derived here, can be considered as a straight-
forward generalization of Eq. (76). The condition that the
difference of the spectral functions of two commuting
fields should vanish corresponds for the form factors

to the condition that the difference (G, — Gp) should
vanish when integrated over certain (one-dimensional)
real surfaces.

(6) There are a set of obvious solutions to the integral
equations (61), (63)-(66), which can be found from Eq.
(50):

Gyley, €35 b3) — Gyley, €9,b4) = — (27)-4 f b, db,
X [l&(cl, Cz; b3; bl’ bZ)OI(bl’ bz, b3)

+ [13eq, €p3b3504,b3)0,,(b4, by, b3)]. (81)

Any set of weight functions ¢, and o;; such that

(1) o, fulfills the superconvergence relation in Eq. (25),
(ii) o; = oy, inside the regions T, and T,

can easily be seen to fulfill the equations. We will not
give any details as the computations are very similar
to the ones above. The following results can also be
proven by straightforward computations:

(a) Insertion of (the difference of) the form factors
according to Eq. (81) in Eqs. (43) and (44) will after some
few computations give back the “input functions” o, and
Oppe

(b) Insertion of (the difference of) the form factors
according to Eq. (81) in Eqs.(23) and (24) will also give
back Eq.(14).

There is consequently a one-to-one correspondence be-
tween the form factors G, — G, (fulfilling the integral
equations) and the weight functions opand o [fulfilling
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properties (i) and (ii) above]. This relation closely re-

sembles the connection between “the real and imaginary
parts’ for a function analytic in the cut plane according
to the example in the Introduction.

The solution in Eq.(81) is in general nonzero in the
whole “physical region” T 1,T,,D,,D5,and D5. In a
theory with a “realistic” mass spectrum there are then
further restrictions on the weight functions o; and o,.
If, e.g., there are no states in the theory with squared
mass less than m 2, then the left-hand side of Eq. (81)
vanishes in appropriate parts of the (c;, ¢y, b3) space.
The resulting condition on o; and o,; are integral equa-
tions which can be seen to closely resemble Egs. (61),
(63)-(66) for G , and G .
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APPENDIX A

In the formulas of the main text we have assumed that
the vertex function in momentum space vanishes in
asymptotic directions inside the analyticity domain de-
rived in KW. In this appendix we will extend the forma-
lism to cover also the cases when the vertex function
grows at most as a polynomial when one or more of the
variables approaches infinity.?!

To that end it is useful to introduce the “associated” ver-
tex functions ggl"z (Z1,Z4,b3;2,,25) defined by

890 = A5G,

230 = [A3G(Z4,Z,,b3) — 836Gz, Z,,b3)](Zy — 2,)1,

g9} = (836121, 2,5,b3) — 836G(Z4,25,05)[Z5 — 2,) 7Y,

g1 = (83G(Z1,Z,,b3) — 836(21, 25, b3) — 836(Z 1,25, b3)

+ 836(2,,2,,03)) X (2] — 2) HZy — 2,5)2,

+1 +1 d ! 0 "2
ggl Ry =<a—21> <§—2> g%l.

The following two properties of the functions g71" are
immediate consequences of the definitions and ihe ana-
lyticity properties of the vertex function proved in KW.

(A1)

ny

(1) If the parameters (z,,2,) are arbitrary negative
numbers, then for any positive integers n, and n, the
functions g'él"? are analytic in the same domain as the
absorptive part A;G of the vertex function.

(2) When the absorptive part A;G is at most polynomi~
ally increasing in asymptotic direction inside the analy-
ticity domain then by choosing the integers n; and n,
sufficiently large we can make the associated function
£%"? to vanish asymptotically.
Consequently, even if the dispersion relations for A;G do
not make sense due to lack of damping in the integrals,
the representation formulas may be meaningful for one
of the associated functions. By induction it is easy to
prove the following relation:

1 1

. 1 +1
ASG(ZI,Zz,b3)=(Jl'"Zl)n1+ (Z2—zz)n2 nll nz!

X gaiZ, Z,,b3329,25)
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1 3 \i 1
= — o - _ ny+l
L5 s () e
Xgo"2 (21, Z,,b3321,25) (A2)
7o
1 E i) L n,+1
+k=0 k!(Zz z5) (622> 111!(21 z)"

X

0 .
g’éx (Z124,b3321522)

21 1 i k
“RE fie Gl me)
2\ [/ a\*
X <5;; <872> A3G(Zl,22,b3).

The functions g%"2 (21,Z4,b3521,25) and g"lo(Zl, 25, b4;
Zqs z,) are actually analytic in the whole complex plane
cut along the positive real axis of the corresponding

Z variable when (z,2,) are negative. It is as a matter
of fact simple to prove that

1

7y (Zy —25)"2 g3 221, Z 5, bg521,25) = 836 (21, Z5,b3)

2, 1 ) 5 ;
_12) i1 (Zy —2g) 32, A3Gl(z2q,24,b3)

— zﬂl(Z —z )n2+1f°° dbz GA(Z]J b2’ b3)
B ’ 2 0 (b,—Z,) by —Z yratl )
2 2 2 27?7 (A3)

To achieve this result, we have made use of the repre-
sentation formula for the absorptive part in terms of
the advanced and retarded functions in Egs. (31)-(35) of
the main text. A very similar result is valid for the
quantity g" 10, Assuming that n; and n, have been chosen
so large that the associated function g3" 1”2 yanishes in
asymptotic directions, then we may represent it by
means of Eq. (14) of the main text. The weight functions
in that representation ¢ (g3"2) and 0,,(g5"2) can be
defined as functionals of the form factors by means of
the same procedure as in Sec. 3,i.e., by Eqs. (42) and
(44) of the main text:

o (gs™") = 41i [dayda,dllr — a,)lr — ag +7b;)

1 2, +b1—27 nn,
\g =7y 1"2 6(a, — 7)
<2 (al—bl ? gB 1
1 a3 tby—2r
+ = 172 —7)
VTR 6la r).
2 la, —b,), g4 2

A similar formula can be given for the weight function

(A4)

o.(g:™"2). The “generalized form factors” g7"? and
'ss g B
ga"? are defined by
nr n1! < 9 )"
2 = —)"2Glay, as, b3)

£4 (@, —z)m 1 \oz, [C5las, a2 b2

- GE(al’ 2o, b3)](a2 - zz)_ly

n,! 0 (a5)

g = iy (G, 0]

(az - 22) 2 azz

- GA(’z 1,29, ba))(al - Zl)—l.

Then we find by means of Eg. (14):

g5" = 21)2ffdb1dbz[K‘(Zl,Zz,b3;bl,bz)ox(g?"z)
(2mi

+KU(leZZ,bB;bl’bz)ou(gg‘nz)]' (AG)
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Using eqs. (46), (A4), (A5), and (A3), we find a represen-
tation formula. for the absorptive part A;G in Egs. (A2).

We will now assume that the generalized form factors
gm"2 and g73"2 in eq. (A5) fulfill the integral equations
derived in Sec. 5 of the main text. Then we find by an
application of the limit in Egq. (35) from the first line
in Eq.(A2) [cf. Eq. (A8)]

£ <(Zl e Zl)"1+1(22 -

(by — 2,V (b —2 )",
= G2e(py) (36— p) 2 o
by —2;) m*1 by —25) me*t >
- 9(_p1) nql n2! gBl ?

1

= (21r)29(p3)%9(—p2)[GA(bl,bz,bg)

—El l(b —Zl)](
o

j=0J!

>JGA(213 b2: 3)]
21
%2

1
25

— 9(_p1) [GB(bl’ bz, b3)

_zz)k(a >"G3(b1,22,b3) é (A7)
In the same limit we get the following contribution from
the second line in Eq. (A2) [cf. Eq. (A3)]:

(21;)29(1;3)6(—1)2)2%,(1; 21)7< )JG (2, b3, b3).

(A8)

A similar term (with the indices 1 and 2 exchanged)
comes from the third line. The fourth line does not give
any contribution in this limit. Consequently, we find by
summing the different contributions that

£(A3G) = (2m)2[0(p3)0(— p,)G, — 8(p,)8(—p,)G5].  (A9)
Thus the only change in the formalism in this paper is
that the generalized form factors g’a"z and g%!"2 occur
instead of G, and G, in case the absorptive part A;G
“needs subtractions.”

APPENDIX B

We will in this appendix investigate the properties of
the analyticity region close to the boundary region in-
side which the integration in Eq. (14) is performed. We
will explicitly construct (in two-dimensional space—
time) the limiting arguments (b, + i€’, b, + i€”,bg) in
terms of Lorentz squares of vectors p; and k]. according
to Eq.(1). To that end we choose light cone coordinates
(st ) j = 1,2, for the vectors p, and p,. The limiting

1ma.g1na.ry parts of the vectors &, and k2 =—k, have
the light cone coordinates e( 3 h)l . The 11m1t para-
meter is €.

Then we have

by =—pi=s;t, (B1)
b2 = —p3 = syty, (B2)
=—pF=—(p; +p2)2 = (51 + sx)t; + ), (B3)
€’ —k2 P =—3elsix + £,30), (B4)
"= —kyp, = be(sh + 1,8). (B5)
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The condition that %, is inside a definite light cone is
that & and A have the same sign:

— k% = e2der > 0. (B8)
We will in particular investigate the neighborhood of the
intersection between the anomalous cut ACI and the real
axes, and we therefore assume that

(r—b)r —b,) +7rb; =0, »>0. (BT7)
The two possible roots for the parameter 7 in this equa-~
tion is in terms of light cone coordinate above:

Y=r,=—Sls, ¥ =7,=—Sut,. (B8)
Assuming that #; > 0 and solving for s,,¢; and s, in
terms of ¢, from Egs. (B1), (B2), and (B8), we get
sy =—7/ty, sy =bylty, ty =—byly/7,. (B9)
Equation (B3) will only serve as a consistency require-
ment in this connection; insertion of the result of Eq. (B9)
gives back the eq. (B7) for ACI.

From Eqs. (B4), (B5), and (B9) we find for the ratios

€/e=rx+b,13/r,,
€/e=byA +13, €=¢/2, (B10)

Thus we find that the ratios have definite signs iff the
corresponding quantity b, ; is positive, but can take on
both signs depending upon the ratio of 3¢/x and 1% else-
where. In particular the ratio €’/€¢” can take on any
positive real value (nonzero, finite) if both by,and b, >0.

Inside the region D (b, b,, b3) the explicit expressions
foro (A3G) in terms of the retarded and advanced func-
tions in Egs. (B1) and (B2) is (note that if p, € V+, then
inside Dy,p3 € Vrandp, = —py, —p3 <€ V- :3

0{A3G) = A3Glb, + i€’ by + i€, by)

+ A3Gb, — i€’ by, —i€” by)

_llm <A3G[k eyt +A3G|k €V>
k—>0

= (2m)4 fdx e BR 0252 3 6(py — p, )
In)

x (0le(12)[B(x,), A(x,)] Im)niCI0).

Similar formulas can be given for the weight function ¢
for other parts of the integration region.

APPENDIX C: LIMIT VALUES

In this appendix we will give a few details of the limiting
procedure leading to Eqs. (45)—(49) in Sec. 4 of the main
text. The quantities to be investigated are £(KI) and
£(K1Y) defined by e.g.[cf. Eq. (33)]

LKD) = lim [KY— (py —ik)2,— (py + ik)?)
EEVT-0

_KI("‘ (Pl + ik)zy_ (pz - ik)z)] (Cl)

for the kernel function K1(Z,,Z,) in Eq. (15). We have
not indicated the dependence on the mass variables b i
but note that b3 = — p% = — (p, +p,)2. We will fre-
quently make use of the following well-known relations
Lim[1/(X+ ie)] = 1/X, ¥ in5(X). (Cc2)

€—>+0
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It is useful to define the quantities j; and j, by

Kl= [dr §0)6((r —b)r —b,) + 7by)

x[8(b; —7)j; + 66y — 7).  (C3)
In the indicated limit we find for, e.g., j; defined by
86, —7) by +Z,—2r)
j1 = z <1 + -2 L
bl - Zl
(2r + b3 —2Z1—Z,)
< 3 1 2 >’ (C4)
r—Z)r — Z,) + rhg

£(jy) = 66, —7) fdc,de, 8(p2 + ¢;)0(p3 + c,)%,, (CH)

Jcl = — 2ﬂl€(p1)6(b1 - Cl)

by +¢cy —27) (27 + by —cq —
» <1 + 1 Cl ) ( e 3 Cl Cz) )
2 r —c)r — cy) + by

+ 2mie(n)s((r — ¢;)r — ¢3) + 7b3)
1 by + ¢y =2
2 (bl - Cl)p

The sign function € with a vector argument is positive
{(negative) when the vector belongs to V+ (V-). We note
that due to the positivity of &, the vector p, is timelike
in the first term and therefore the sign function is well
defined.

The vector argument in the sign function of the second
term is

(27 + b3 — ¢ — ¢cy). (Cs)

= (r — ¢y)py, — (r — co)pq. (Cn
Making use of the restriction on (¢4, ¢y, b34) according
to the § function, we find
— 02 = (1/r)(r2 — cyc,)2 =7(2r + by —¢; — ¢y)2 2 0.
(C8)
The vector n; is consequently timelike or lightlike. To
investigate which light cone the vector belongs to, we
make use of the assumption that p; = —p, — p, is in
V+ [cf. Eq. (28)]. We find

nypg =3leg — e N27 + by — ¢y — ¢y) (C9)
Thus %; changes light cone at the point 2r + b; —¢; — ¢,
= 0. The argument of the § function can be written as
[cf. Eq. (38)]

r—c))r —cy) +7rby =3[(27r + by — ¢y — ;)2
—Albg, ¢4, ¢5)]. (C10)

We conclude that this condition corresponds to the con-
figuration when a(b3, ¢y, ¢5) = 0,i.e.,

b3 = (‘\/zl + '\/’82)2.

This can only happen when the vectors p, and p, are
parallel. We note that the term e(nI) occurs multiplied
by the factor (27 + b5 — ¢; — c¢,) and we may therefore
write
€m)o(lr — c,)r — c,) + 7b3)(2r + by — ¢y — ;)
= elcy — ¢)0((r — ¢ )r — cy) + rb3)VAlby, cq, c3).
(C12)

(C11)
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In this way the result for the quantity 13 is evident,
The first term of 3, can also be simplified by use of
the & functions 6(b; — ¢;) and 6((r —b,)(r — by) + 7by):
by +c,~2r) (2r+by—cy—cy)

2 (r — c)r — cp) + 7b3),

27' + b3 - bl - Cz
—r

1 ((’r"—bl)(”'_cg) +7’b3)p

1+

=1+(b

1

=1+ 2r +b,—b,—C))———
3 1 2(02“1’2);,

2r +by —by— b,
Applying very similar considerations to the term j, in

Eq.(C3) we arrive at the Eq. (45) for £(KI). In the same
way Eq. (45) for £(K1I) can also be derived.

(C13)

APPENDIX D

In this appendix we will give a few details of the proof
of Egs. (51)~(54) of the main text.

We begin by considering Eq. (51) and applying the left-
hand side to a suitable test function gla,, a,):

72 Jdr db,db,60(r — by)r — b,) + 7b3)
x 0y — c)r — ¢y) + 7b3)6((r — a,)

(al - 7’)
— + -
x (T a2) TbB) (al _bl)P
b, —
X 8lay —7) B =), 6(r)gla,, ay)da,da,. (D1)

We note that the effective integration range in ¢, and a,
is limited by the requirements in the step function and
other § functions. Thus the following inequalities must
be fulfilled:

a;>0,b5 >0,

703

ay =7+ y—g;
_ + a1bg VT — V)2
=a, + by (r-a1)+y_als(a1~— b3)2;

D2
(al_r)(az—r) < 0; ( )

rb asb
Lo—a, v byt —ay
2

a1=r+

7‘—-(12
= (‘\/5-2 + ‘/b_3)2 if Qo >0

Comparing the defining Equation (21) for the regions

D, and T ., we note that the inequalities in Eq.(D2) corres-
pond to the regions D; and T,. We may consequently
introduce the characteristic functions x(D,) and x(T',)

for these regions without changing anything in the inte-
gral. The integrals over a, and b, may be carried out

by means of the & functions, and we are left with

7-2 fdrdb da, 8((r — ¢;) (r — cp) + 7b,)6wr)[x(Dy) + x(T,)]

1 1 . rbs ) D3)
><(al_bl)p (bl_c—ljpg@vr Yo (

We further note the well-known distribution equality:

1 db o
",,’Ef(—*)’T_Ta—ch—b,,‘é(“ o). (D4)
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Application of (D4) to the b, integral leads to

— Jarday 6la — A)o((r — )r — ¢) + rb3)e(r)

rb
() + 31 (o, 7 + Tﬁ‘a)

=— fdr 9(7)6((7’ - Cl)(’)’ - Cg) + rbg)[x(Dl(Cl, Co, b3))
+ X(TZ(CI’ Co, b3))]g(C1, Cz)- (Ds)

The final step is to recognize that in the region
D, (cq, ¢y, b3) there are two positive solutions to the
quadratic equation for # in the 6 function, while in T,
there is one positive and one negative solution. The re-
sult is then what results from an application of the
right side of Eq. (60):
- —‘1_—[2X(D1(C1, Cg, b3))

Albs, 1,5 €35)

+ X(TQ(C;U Coy b3))]g(0102)

where Ab3, ¢y, ¢y) is defined in Eq. (38) (note that x > 0
in all the regions D; and TJ.).

The difference between Eq. (51) and (52) is only the

step function argument. From the inequalities in Eq.(D2)
we deduce that the support in this case is in the regions
D, and T,. The remaining steps then follow from Eqs.
(D3)—-(D86) with trivial modifications.

The proof of Egs. (53) and (54) follows the same lines.
We note that the step functions imply

by = (1/Bla, + (1/a)a,
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=a, +a, + (@/Blay + @B/a)a; > (Va; + Va,)?
ifa; > 0,a, > 0. (D7)

This explains the appearance of the characteristic func-
tion for D3 and T4, T ,, respectively.
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For coordinate systems with rotational symmetry it is shown that particular solutions of the biharmonic
Poisson and first order Stokes equations exist and can be expressed in terms of simple derivatives and
algebraic functions of the corresponding solutions of the Laplace and Stokes equations.

INTRODUCTION

In mathematical physics, problems frequently arise in
which it is necessary to solve either the biharmonic
Poisson equation, or an equation we shall call the first
order Stokes equation, together with prescribed boun-
dary conditions. These two equations may be written as

Ve = ¢, AZ¥=y, (1)
where
V2 =0, A2y =0. (2)

Here v2 and A2 are the Laplace and Stokes operators,
respectively. The first equation occurs, for example, in
elasticity and in the theory of slow asymmetric electro-
magnetic waves; the latter in the Stokes flow of a viscous
fluid and in the theory of slow symmetric electromag-
netic waves.

Regardless of whether the boundary conditions for such
problems are satisfied by eigenfunction expansions, or
whether they are included in a Green's function solution,
it is necessary to find particular solutions of Eqs. (1)
that form complete sets in the coordinate system used.
Our original motivation was the need to find such solu-
tions in the system of toroidal coordinates. This system
has one degree of symmetry, but is such that the equa-
tions of mathematical physics cannot be solved by
simple separation of variables. We have, however, been
able to generalize our results to include all coordinate
systems possessing rotational symmetry, regardless of
their separability properties.

For such symmetry systems we show how particular
solutions of Eqgs. (1) can be written down explicitly in
terms of linear operators, involving only derivatives and
simple algebraic expressions, which act on the solutions
of the Laplace or Stokes equations, respectively. These
solutions are such that the dependence, or independence,
of the solutions of the Laplace or Stokes equations on the
symmetry coordinate is preserved. Further,from a
complete set of solutions of the Laplace or Stokes equa-
tions, our procedures generate complete sets of particu-
lar solutions of the respective Eqgs. (1).

METHOD OF SOLUTION

The particular solutions of Eq. (1) for a general rotation~
al coordinate system are derived in two stages, Firstly,
we consider the rotational system of cylindrical polar
coordinates, and construct solutions for & and ¥ in
terms of algebraic functions and derivatives only that
act linearly on ¢ and ¥, respectively. A simple modifi-
cation to these particular solutions then enables us to
show how they can be interpreted as particular solutions
for any rotational system.

Cylindrical polar coordinates (p, 6, z) have the z axis as
the axis of symmetry and 6 as the azimuthal angle, or
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symmetry coordinate, that is common to all rotational
systems. The solutions of the Laplace equation in these

coordinates can be written, for the purposes of subse-
quent manipulations, in the form

d)(p: 9,2)5 ¢0(p’z’a)eia9, (3)

where o is an arbitrary constant of separation. It is the
independence of the metric coefficients on 8 that allows
this separation and the existence of solutions of the

Stokes equation, which by definition are independent of 9.

The solutions of the Laplace equation as given by Eq. (3)
allow the biharmonic Poisson equation to be written as

= ¢p(p,z,a)eiz®,  (4)

We look for a solution to Eq. (4) of the form
0 0

q’(ps 9’2) = (A(p,Z,oz) —+ B(p,Z, (Y) '
op 0z

+C(p,z,a)>¢0(p,z,a)ei“9, (5)

where A, B, and C are arbitrary functions of p,2 and the
parameter a. Substituting Eq. (5) into Eq. (4) and recal-
ling that V24 = 0 we obtain
— 2

Aypd, — 24,0, + (A/02)¢, + (A,/p)0, + A,,9,

+24,¢,,—2 aZ/p3 Ag, + B,,¢, + 2B,¢,,

+ (Bp/p)(pz + Bzz¢z - 2Bz¢pp + z(az/Pz)Bz¢

— 2(B,/p)¢, +C,,0 +2C,0,+ (C, /o) +C.. ¢

+2C,¢,= ¢,
where the subscript p denotes partial differentiation
with respect to p etc. This relationship is an identity as
it must hold for all functions ¢. Thus equating coeffici-

ents of ¢ and its derivatives we find that the functions
A, B,and C.must satisfy the set of equations

C,, +(C,/p)+ C,, +2(a2/p?)B, — 202(A/p3) = 1, (6)

Ay, + (A,/p) + (A/p?) + A,, — 2(B,/p) + 2C, =0, (1)

B,, + (B,/p) + B,, + 2C, =0, (8)
A, +B, =0, 9)
B,—A, =0. (10)

We need only obtain a particular solution to this set of
equations.
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Equations (9) and (10) are Cauchy-Riemann and, there-
fore, imply

App +Azz :Bpp +Bzz =0. (11)

With this simplification Eqgs, (7) and (8) reduce to

i<zc—*—1> -2 (zc—‘i> —o,
p p oz p

whence

A =p(2C + p), (12)
where p is an arbitrary constant. Substituting for 4 in
Egs. (6) and (11) yields

Coo t [(4a2 + 1)/p]C, +C,, =1,
(13)
c,, +2C,/p)+C,, =0.

Upon subtracting and integrating with respect to p

2
c=—1 _P°ina).
(a2 —1) 2

The arbitrary function %#(z) is determined by substitut-
ing in Eq. (13) and integrating with respect to z, Finally,

1 2 _ 3,2
C = (p 2 )+qz+r, (14)
(4a2 — 1) 2

where ¢ and # are arbitrary constants. From Eq, (12)
A = [p/(4a2 — 1)) (p2% —322) + 2gpz + (p + 27)p.  (15)

The function B is deduced by integrating Egs. (9) and (10)
with the above form for A and comparing the two re-
sulting expressions:

B=[z/(402 — 1)} (3p2 — 22) + q(22 — p2) + (p + 27)z.

(16)
If we substitue Eqs. (14)—(16) in Eq. (5), it is readily
verified that the following terms are harmonic:

[2gpz + (p + Zr)p]%% + [q(22 — p2?)
+(p+ 27)438_: + [z + 710

Thus a particular solution of the biharmonic Poisson
equation is

1
®(p,0,2) (p(p2 - 322)i

Tz 1) %

(p2 — 322)

+z(3p2—z2)—a—+ )¢O(p,z,a)ei“9. mn

oz 2

This solution preserves the 6 dependence of ¢, but is
invalid in the limits @ — + 3. For these values of a,
however, the function ¢ is double-valued, and in most
physical situations such solutions of the Laplace and
biharmonic Poisson equations would be of no interest.
Therefore, we shall not pursue solutions in these limits.

The solutions of the first order Stokes equation are
obtained in cylindrical polar coordinates by applying
the same technique to the equation

J. Math. Phys., Vol. 14, No. 1, January 1973

02 139 0
A2y =(——=—— +——\¥(p,2) = z
<8p2 % azz> (p,2) =¥(p,2),
and assuming a form for ¥ as given by Eq. (5) with & and
¢ replaced by ¥(p,z) and (p, 2), respectively. The
final particular solution is then shown to be

1 3 3
¥(p,2) = —(p(p2 —322) — + 2(8p2 — 22) —
3 op 9z

(p? — 322

)
———Z——)wm,z). (18)

The particular solutions given by Egs. (17) and (18) have
been obtained in cylindrical polar coordinates. In order
to extend these results to a general rotational system,
we define g; and g, to be the two coordinates of the
rotational system orthogonal to . The metric coeffici-
ents are then independent of 8, and, consequently, the
whole of the above calculation is valid if ¢(p, z, @) and
Vv(p, z) are replaced by ¢(q1,95, @) and ¥(q,,4,), res-
pectively. Both of the operators in Egs. (17) and (18)
are transformed from (p, z) to (g, 9,) variables by
utilizing the geometrical relationships that exist be-
tween the coplanar coordinates (p,z) and (g,,4,). Con-
sequently, the particular solutions ®(g,,9,, 8) and
¥(q,,4q,) are expressible in terms ¢(g,,9,, 8) and

¥ (g1, q,), respectively, through operators containing the
variables ¢, and g, only.

We now give an example of the application of this pro-
cedure to a coordinate system in which both the Laplace
and Stokes equations cannot be solved by separation of
variables.

TOROIDAL COORDINATES

The system of toroidal coordinates (7, 7, 8) is an ex-
ample of a rotational system, since the metric coeffici-
ents

d - d sinhng

hy=h =——%— h, = ,
{coshn — cos7) (coshn — cosr)

n T

where d is a constant, are independent of 6. Complete
sets of solutions of the Laplace and Stokes equations are,
respectively,

¢ = (coshn — cosT)1/2P™ , . (coshn)ein *imé

sinhn (19)

- (coshn — cosT)1/2

Pr%—l/z (coshp)ein,

where P, o is an associated Legendre function of the
first kind, of degree m and half-odd integral order

n — 3. The geometrical relationships between (n, 7) and
{p, z) coordinates are

_ d sinhy
(coshn — cosT)’

d sinTt
(coshn — cosT)

From these relationships the operators in Egs. (17) and
(18) can be expressed in terms of (n, r) coordinates.
Operating on ¢ and ¥, as given by Eq. (19), yields ex-
pressions for & and ¥ that can be simplified by dropping
complementary functions. We find
®(n, 7, ¢) = [d2/(4m2 — 1)(coshn — cosT)1/2]einT +ime

X [2 sinhZn Pm!, ,(coshn) + (coshy — 2in sinT)

x Pm_ ,o(coshn),
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d2 sinh? X
¥(n, 7) = ——6——T] ({2 coshn + coshy cosT(coshn — cosT) — 6 sinh2n(n2 — 1) [2 + cos7(coshn — cosT)]

XP,_1,2(coshn)) ein7/(coshy — cosT)3/2
+ 2in sin7 [2 — 3 coshn

where prime denotes differentiation with respect to
x(coshn — cosT)]} P} _;,4(coshn) coshn.
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Position operators in a (3+ 1) de Sitter space
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Earlier studies of covariant position operators in special relativistic quantum theory are generalized here
to the case of a de Sitter universe of positive curvature. The hyperplane formalism previously employed
undergoes a natural generalization in this case to a spacelike hypersphere formalism. In the analysis of
the underlying geometry, the minimal pseudo-Euclidean embedding space for the de Sitter universe plays
a dominant role and suggests an intrinsic coordinate system of special interest for the representation of
geodesics. The de Sitter analogs of the Minkowski space center of energy, center of spin, and center of
inertia are constructed, and we find that de Sitter-center of spin to retain commuting components in our

intrinsic coordinate system.

1. INTRODUCTION

Within the general formalism of the quantum theory
accompanied by the specification of a particular space-
time symmetry group, we define the localization pro-
blem to be the identification of those operators which
can be associated with measurements designed to locate
or localize some dynamical property that can be mani-
fested by a physical system in an appropriate experi-
mental environment. Some of the steps involved in the
solution of this problem are the determination of the
transformation properties of the operators under the
specified symmetry group and the determination of the
dynamical or structural property that is, in fact, locali-
zed. Ultimately the determination of the role these
operators play in the description of interactions will be
of great importance. Any more or less complete set of
hypothetical answers to these aspects of the localization
problem constitutes a quantum theory of localization. At
the present, with the exception of the case in which the
symmetry group is the Galilean group, there is no such
theory generally accepted. This paper is intended as a
contribution to a quantum theory of localization in a
space—time of constant positive curvature.

There are a number of different approaches which one
might take to this problem. We note, in particular, the
investigations by Philips and Wigner of states localized
on a circle in a (2 + 1) de Sitter space.l More recently,
Hannabuss put forward the view, motivated by the Iwasa-
wa decomposition, that particles should be localized with
respect to horospheres in a (4 + 1) de Sitter space.?
However, the approximations employed, or the restricted
set of cases considered, or the problematic character of
auxiliary hypotheses do not permit a final judgment to be
reached. For us particular interest lies in determining
the admissibility of analogs for finite radius of curvature
R to each of the position operators studied by one of us?3
and others? in Minkowski space~time. The method we
propose to use is based on an appeal to the minimal em-
bedding space of the physical de Sitter universe. The
embedding geometrical manifold is the five-dimensional
Minkowski space W 4 with metric (1, — 1, — 1, —1,

— 1). The group of isometries is the inhomogeneous de
Sitter group ISO(1,4) = T5 X SO(1, 4). Here T is the
embedding space-time translation group and SO(1, 4)

the homogeneous de Sitter group3 which is the group of
isometries of the physical de Sitter universe Dy 3.

From the outset of this study we were concerned that

we associate Hermitian operators with coordinates that
in the classical limit have a relation to the group of
metric automorphisms on the de Sitter universe. We
strongly expect, and will present arguments for our posi-
tion, that an observer in a de Sitter universe evolving
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along a timelike geodesic and free to play with light
rays and mirrors and watch otherwise non interacting
particles, would experience the passage of time in ac-
cordance with the development of a one-parameter sub-
group of the group of metric automorphisms. We have
attempted to choose our coordinates accordingly. As far
as the directional characteristics of our coordinates go,
we have fared well. A subgroup of the metric automor-
phisms does take x, = const slices into x; =const slices,
Furthermore we have a family of equivalent coordinate
systems in which all geodesics satisfy linear equations
of the form

x; =%,00) + x,00xy, =123

We are far from exhaustively familiar with the relevant
cosmological or even group-theoretical literature; but
we have not seen these coordinates used before, and one
thing that seems to mitigate against their popularity in
the minds of many writers is that they lead to a non-
diagonal form for the metric tensor. A nafuralé clock
at the spatial origin of coordinates would not measure
%o which through all eternity ranges only from — R to

+ R. The proper time of the natural clock ranges from
— @ to + %, Also our system has the very common pro-
perty of assigning the same coordinates to two distinct
points of the universe.

In Sec. 2 we discuss the classical one-sheeted de Sitter
universe from the point of view of the five-dimensional
Minkowski embedding space M ; 4.7 We discuss the iso-
metries, set up our geodesic coordinates, and note a
very neat generalization of the hyperplane parameters
used by one of us to parameterize observables in special
relativistic quantum theory.3

In the last section a unitary representation of the group
IS0(1, 4) in a Hilbert space is introduced, and the pro-
blem of constructing the analog of the manifestly Poin-
caré covariant center of energy, center of spin, and
center of inertia? is attacked. Transformation proper-
ties and commutation relations involving these operators
are discussed as well as the relation between SO(1, 4)
and ISO(1, 3) via group contraction.8

2. THE GEOMETRY OF THE (3+1) DE SITTER
UNIVERSE

The (3 + 1) de Sitter universe is 2 space~time manifold
of constant positive curvature originally presented by
de Sitter as providing a solution to Einstein's gravita-
tional field equations which possessed structure (non-
vanishing curvature), but was yet empty of matter and
energy. We are not concerned with the sometimes con-
troversial questions surrounding this historical motiva-
tion for the de Sitter universe. For us the space-time
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manifold is strictly a given model which retains the
homogenous and isotropic character of Minkowski
space~time while introducing a minimal element of
cosmological structure, viz. curvature.

The structure of the five-dimensional Minkowski space
M, 4 is characterized by the line element

ds? = b,,dyedy®, a,b=0,1,23,4 2.1)
with

6 = (1, —1, — 1, —1, —1). (2.2)
The metric automorphisms of M , constitute the in-
homogeneous de Sitter group of coordinate transforma-
tions

y’a:AZyb-l-ca

with
AgéabAg = §cd

(2.3)
(2.4

and ¢, a constant 5-vector.

The de Sitter universe D, j is conveniently represented
as a four-dimensional hyperboloid of one sheet embed-
ded in My 4. Dy 5 then becomes the set of points,
y, € My 4, satistying

Ya¥® =38 —v%—¥3 —¥3 —y§=—R2 (2. 5)
The invariant line element in D, ; is (2. 1) and is greater

than, equal to, or less than zero for timelike, null, or
spacelike infinitesimal intervals, respectively.

The metric automorphisms of D, ; are the linear homo-
geneous de Sitter transformations

5y (2.6)

with (2. 2) and (2. 4).

We adopt the standard assumptions concerning the iner-
tial behavior of free particles and light rays,i.e., the
former evolve along timelike geodesics, the latter along
null geodesics. The geodesics themselves are well
known to be the intersections of D; 3 with two-dimen-

V=

sional planes in 9, , that pass through the origin y, = 0.

The spacelike geodesics are the intersections with
spacelike planes and are closed curves along which the
integral of the line element yields

$ |ds] = 2R, 2.7
This defines the sense in which D, 5 is said to be a spa-
tially finite universe. The null geodesics are the inter-
sections with those planes containing null intervals, but
no timelike intervals, and are straight lines in M4 4.
They are, in fact, the straight line generators of the
hyperboloid of revolution D, 3. The timelike geodesics
are the intersections with planes containing timelike
intervals and are all open curves, As prototypes of the
three kinds of geodesics we can take

Vo =¥, =93=0, 3%+ 3y} =R2? (2.8)
for spacelike geodesics,

¥2=93=0, =R, 3,2y, =0 (2.9)
for null geodesics, and

¥1 =9 =¥3 =0, 3, =(R2+ 312 (2.10)
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for timelike geodesics. Every spacelike geodesic can

be transformed into (2. 8) by metric automorphisms

(2. 6) and (2. 4); every null geodesic can be so transform-
ed into (2. 9) and every timelike geodesic can be so
transformed into (2. 10).

Now consider an inertial observer in D, ; with world-
line (2.10). We contend that such an observer will judge
all points with y, = 0 and y, > 0 to be simultaneous
since a light ray emitted from the observers world line
at proper time — |s| relative to the Yo = 0 point and re-
flected back to the observer from a point with y, = 0
will reach the observer again at a relative proper time
of + |s|. Furthermore, since metric automorphisms in
D, 3 leave the world function between two points invari-
ant

s(y(z),y(l))=5(y(2)"y(1)’)’ (2.11)
we conclude that any metric automorphism that leaves
the worldline (2. 10) invariant takes the set of points
with y, = 0 and y, > 0 into a set of points that again
appear simultaneous to the observer. Among these
automorphisms are the rotations in the (y;,y,) or (y,,
v3)or (¥3,¥;) planes, which “appear” like spatial rota~
tions about the point yo =y, =y =93 =0, y, =R to
the observer in D, 5, and the pseudo-rotations in the
(¥4, 3’0) plane which “appear” like time translations.

The remaining planar metric automorphisms alter the
world line of the observer;but they still transform the
vo =0, ¥4 > 0 points into points that appear simultane-
ous to the inertial observer on the transformed world
line. These automorphisms are the rotations in the
planes (yy,9,4) or (¥5,54) or (v5,9,) which “appear”
like spatial translations and the pseudo-rotations in the
planes (v1,%,) or (¥,,94) or (¥3,5,) which “appear”
like Lorentz transformations.

In the preceding discussion the original set of points
yo = 0 was restricted by the condition y, > 0 because
the points with y, = 0 and y, < 0 are beyond the well-
known light horizon? of the world line (2. 10). More
generally any point in D; 5 with

¥4 <= (2.12)
is beyond the active light horizon of (2. 10),1i.e.,no light
ray can reach such a point from (2. 10). Correspondingly
any point in D, ; with

¥4 < (2.13)
is beyond the passive light horizon of (2.10),i.e.,no
light ray can reach (2. 10) from such a point.

Now the equation for the original set of simultaneous
points for the world line (2. 10)

Yo =0 2.14)
can be written in the invariant form

yan§® =0, (2.15)
where the 5-vector n{® is

n§» = (1,0,0,0,0). (2. 16)

Under the active metric automorphism Ag, this set of
points is mapped into the set satisfying
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yen, =0, (2.17)
where
Ng = A0, (2.18)

In N, 4, Egs. (2. 14), (2. 15), and (2. 17) define four-
dimensional spacelike hyperplanes, and in D, ; these
same equations determine the intersections of these
hyperplanes with D, ; which intersections are three-
dimensional spacelike hyperspheres S; of radius R in
Dy,3. The hypersphere (2. 17) “appears” instantaneous
to that inertial observer whose world line is the trans-
form under A2 of (2.10). To the original observer on
(2. 10) this same hypersphere “appears” noninstantane-
ous; but if he likes he may still use this hypersphere as
a domain for stipulating initial conditions. Since these
hyperspheres are uniquely determined by the timelike
unit 5-vector 7, that enters in the equation of the hyper-
sphere, we shall henceforth refer to them as the 7,
hyperspheres.® Notice that in the reduced model Dy ;
the instantaneous hypersphere S, becomes the circle

S, where states may be localized in the sense of Philips
and Wigner.!

With this discussion of the geometry and kinematics of
D, 3 viewed as embedded in M, , behind us, we are
ready to introduce intrinsic coordinates for D, ;. We
want these coordinates to be as intimately related to the
geodesics in D, ; as possible since, as our discussion
has emphasized, we regard the geodesic structure as
all important in determining the way the de Sitter uni-
verse “appears” to an inertial observer. On this basis
we have found the coordinates

X, ER(y,/v4), 1=0,1,23 (2.19)
to be very convenient. The main reason for this is seen
by noting that the 4-vector equations for an arbitrary
geodesic in Dy 4 arel0

¥(yo) = yO){1 + [1 — y(0)2](y3/R2)} 172 + y(0) y,,

where (2.20)
y=4, (2. 21a)
dyo
¥y =(y1,Y2,¥3,Y4), (2.21p)
y(0)-y(0) =0, (2.22a)
and
y(0)2 = R2, (2. 22b)

Expressed in terms of the independent coordinates Xy
(2. 20) becomes

x,(xg) = x,0)x, + %,00) i=1,2,3, (2. 23)

where
yi(O)

(0) = R 2.24

x;(0) 7.0) (2. 24a)
and

. _dx,0) /. y'4(0)>

[0) = ={y,00)—y,0 . 2.24b

x,;(0) dxg (y() y()y4(o) ( )

In short all the geodesics in D, 5 satisfy the equation
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0, (2. 25)
dx?

an equation of the same form as that for geodesics in

Galilean or Minkowski space-time.

Under the metric automorphisms (2. 6) the independent
coordinates x,, transform in accordance with
A¥x  + RA%
Al rvraal .20
R IAjx, + A 3
In particular, the pseudo-rotations in the (y,,5,) plane
take the points with x; = 0 into the points with

A4
x6 =R —A—4 (Z. 27)
4
and
X,
X =L, (2. 28)
A

In these coordinates the transformation appears like a
time displacement accompanied by a space dilation. In
fact the dilation is an apparent confraction since from
(2. 4)

Af = [1+ (Ag)z]l/2 > 1. (2. 29)
But if we recall (2. 11) we conclude that the invariant
interval along an instantaneous geodesic between x (1) =
0,x") and x(2) = (0,x{2)) is equal to the invariant in-
terval along the corresponding instantaneous geodesic
between x/{1) = (x4,x/1)and x,(2) = (x4,x;(2). Con-
sequently a free particle moving along the timelike geo-
desic x; = ¢; increases its invariant separation from the
origin during the time interval from x5 = 0 to x, =
RAZ(A$)L. On this basis one can deduce the familiar
expansion of the de Sitter universe.

Notwithstanding the simple form geodesics take in our
intrinsic coordinate system, we should be careful in
reading metrical properties of the space~time conti-
nuum from equations involving the coordinates. Thus
while a clock at rest with our inertial observer ranges
from a proper time reading of — © to + ©, the coordi-
nate x, ranges only from — R to + R. At the same time
the spatial coordinates x; range from — © to + © over
one half of what we know to be a spatially finite universe.
The important consequence of this whole discussion for
us is that for any inertial observer the “evolution” of a
physical system may be discussed in terms of the tran-
sitions of the spacelike configurations of the system as
one considers first one spacelike hypersphere 7 and
then another n§2). The introduction of the 5-vector 7,
enables the observer to treat all spacelike hyperspheres
equivalently and, thereby, provides a manifestly covari-
ant (under the group of metric automorphisms) descrip-
tion of the timelike evolution of a physical system. Upon
the introduction of the dynamical variable the observer
will parametrize them with the timelike unit vector 7,.
Thus, n,, or hypersphere, dependence becomes the ap-
propriate generalization in the de Sitter universe of time
dependence in the Galilean universe or hyperplane de-
pendence in the Minkowski universe.3

Finally, although no use will be made of it here, we give
the line element and metric tensor in terms of our co-
ordinates %y
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ds? <1 x2>~1d dxn 4 T dE?

T\ TR R2 —x2)’ @.30)
x2\1 X, K

& (%) = (1 ——> <ﬁw + “—”> . (2.31)
R2 R2 — x2

3. ELEMENTARY SYSTEMS IN THE DE SITTER
UNIVERSE AND POSITION OPERATORS

In the state space of a fictitious quantum mechanical
system in 9, 4, the metric automorphisms on M, ,
which constitute the group 7S0(1, 4) are represented by
unitary generators. Denoting the Hermitian generators
of this unitary representation of /SO(1, 4) by P, and

J .5, we have the commutation relations
[TassIeal = iBBaadse — Oaeba + 66cdaa — 8padac),
3.1)
[Py p] = — i85 Py — 8, .P), (3.2)
[P, Py] =0, (3.3)
where
Jop =—Jpay a,0=0,1,23 4, (3. 4)

For ease of comparison with the Poincaré group we re-
define J,, and P, by
RB, =d,,, S/R=P,, u=0,1,2,3. (3. 5)
The B, in D, 3 are the curved space analogs of space—
time translations. A partial interpretation of the opera-
tor S is achieved by observing that

S/R = (P, P+ —IM2)1/2, (3.6)
where M2 = P P¢ is a Casimir invariant of ISO(1, 4).
Now (3. 1)-(3. 3) can be rewritten as

[B,,B,]=ild, R2, 6.7
[By,d,,] = ifi(8,,B, — 8, B,), (3.8)
ors dpu] = il 5, d5, — 80,dny + 0audor — Onudoy),

(3.9)
[Py,d,,] =06, P, — 85,P,), (3.10)
[s,d,,1=0, (3.11)
(B,,P,}=ikb,,SR2, (3.12)
[B,,S]=ikP,, (3.13)
[P,,P,]=0, (3. 14)
[P,,S]=0. (3.15)

The metric automorphisms of the physical universe Dy 5
correspond to the subgroup SO(1, 4). The Lie algebra of
the homogeneous de Sitter group SO(1, 4) is given by the
relations (3. 7)-(3.9). The generators P, of spacetime
translations in the embedding space ml 4 Satisfy the
relations (3. 14), while J,, clearly generates a Lorentz
subgroup of ISO(I, 4). Upnder the contraction defined by
R — «© the motions generated by the BP go over into
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those generated by the generators of translations in
Minkowski space.

The difference between SO(1, 4) and the Poincaré group
I50(1, 3) is that in the present case space~time transla-
tions do not commute. This fact introduces a subtlety
into the interpretation of the B,. While B, , say, does
generate a translation of x; starting from x, = x; = x,
= 0 (a finite transformation of x; from this point yields

cosfx, + sinfR
cosd — [(sinfx,)/R] ~

xy + tanéR
1 —tand(x,/R)

x] =

Xy =Xx3 =X) = 0), the same transformation does not
leave x,,x3, Xy invariant if they are different from zero.
Thus, if one first performs a translation along x, from
the origin or translates the time variable %o by a finite
amount, subsequent translations of x, are generated by a
B/ obtained from B; by appropriate transformations.
This is all very familiar in the case of mixing rotations
of Lorentz transformations with translations. In the
case of translations themselves, however, it is a peculi-
arity of curved space.

We now turn to the problem of constructing within an
irreducible representation of ISO(1, 4) a position opera-
tor which can be a quantum-mechanical representative
for the coordinate vector y,. The esential ingredients
that go into our construction are the following.

(i) Within an irreducible representation space of
1S0(1, 4) the operators at our disposal are the J,, and
P

(ii) We consider building the Y, from ISO(1, 4) genera-
tors as though they were spacelike hyperplane dependent
position operators in the embedding space. The points
in a spacelike hyperplane in the embedding space satisfy
an equation of the form

a*

n%y,=71, a=0,1,2314 (3.186)
where
=1, 19> 1L (3.17)

Consequently each hyperplane is uniquely characterized
by a pair (n,, 7). Under an inhomogeneous de Sitter
transformation the hyperplane parameters 1, and 7
satisfy

'n; = Agnb’ =7+ CaAZT)b. (3. 18)
With these notational conventions adopted the construc-
tion of each of the 5-vector position operators is
straightforward.*t

(iii) The Y ,(n, 7) operators must satisfy the correspon-
dence principle in the expectation value sense,i.e.,
(@Y, (', 7)) = AKELY (0, )W) + c (¥ |¥). (3.19)
(iv) Then as a consequence of (2, 17) we set 7 = 0 or,
equivalently, impose the constraint
neY ,(m = 0. (3. 20)
Motivated by this point of view, we now define the hyper-
spheve dependent position operators in de Sitter space

to be Y ) =(Y, @), Y4('r;)), where the Y, (n) are simply
determmed by (i)~(@{v). However, we take as the fifth
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component the operator

Yym) =[R2+ Y, (mYrm]/2 (3.21)
This requires some comment. It should by now be rea-
sonably clear why we have adopted this point of view,
but what of the transformation properties of the opera-
tors Y, defined in this way? The transformation proper-
ties of the Y, follow at once from (iii) and (iv) and are
given by

U1 (A)Y”U(A) =AY, + Aﬁ(nPYp/ﬂ4), (3.22)
where U(A) denotes the unitary transformation associa-
ted with a homogeneous de Sitter transformation. In
order to ascertain the Y, transform set Y, = f(Y,), then

U LAY, U(A) = UL(A)f(Y,)U(A)
= (Ut (W)Y, UA)
=f(ALY, + AfneY /n%),

from which it immediately follows that for (3. 21) we
have

U A)T,UN) = [(Azy, + AdnPy /n,)? + Rz]lg. 23)
In order to avoid cumbersome notation we will drop the
tilde for the remainder of the paper and assume it to be
understood unless otherwise indicated.

The way is now clear, and we may proceed at once to a
discussion of hypersphere dependent position operators.
In order to make sure that the reader has a perfectly
clear understanding of the rules according to which each
of the position operators are to be constructed, we will
give a brief sketch of the center of energy. It follows at
once from (i)-(iii) that

YS'?'(T]T) = TPa/T)P + Jabnb:(n-p)_ly a, b= 0’ 19 2; 3: 4:

(3. 24)

where

A:B=3%(AB + BA) (3. 25)
and

nP = neP,. (3. 26)
Then as a result of (iv) we readily obtain

ve-e.(n) = Jypn? :(nP) 1 (3.27)
with the obvious result that

Yg-e-(n) :J#,,n”:(nP)‘l, p=0,1,2,3. (3. 28)

This latter result is the one we wished to obtain and may
be rewritten as

Yg-e(n) = 0B,:(nP)1 + J,,nv:(nP) %, (3.29)
where

o/R =1, (3. 30)
and

npP = qeP, — 0S/R2. (3.31)

In the flat space limit the hypersphere parameter o
assumes the role of the time parameter on instantane-
ous (i.e., constant time) hyperplanes. The notation c.e.
denotes that (3. 29) is the desired analog of the center of
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energy in the flat space limit. However, Y§-©-(n) is now
to be defined by (3. 21).

Proceeding in a similar manner, we obtain the hyper-
sphere generalization of the center of inertia

Ye-i-(n) = Yg-e-(n) —S,,n"/nP — 0%, /1P
with
Yy =[R2 + Y, (MY (]2,

(3.32)
(3.33)

where the “spin tensor” S;w and “momentum spin” %
: 1
terms are defined by

S,y =d, = Jn:(PP,/P2)— B :(SP,/P?)

+ B,,:(SPP/PZ) + J,,A:(P"P“/PZ) (3. 34)
and
Z,=S5,,/R =B, — B,:(P*P,/P?)
+ B“/RZ:(SZ/PZ) + JM/RZ:(P)\S/PZ), (3. 35)
with
P2 = p pPr—S2/R2 (3. 36)

In the flat space limit the center of inertia is equal to
the center of energy on instantaneous hyperplanes in the
rest frame.

The hypersphere generalization of the center of spin is
given by

YS-5-(n) = Ye-i-(n) + 5,07/ (P + M) + oZ,/(P + M)
(3.37)
with (3. 33) and where
m2 = P, P:— S2/R2, (3.38)

In the limit R - «©, M2 reduces to the special relativis-
tic mass-squared operator. Furthermore,

lim =, =0.
R

(3.39)

Consequently, in the flat space limit Egs. (3. 32) and

(3. 37) reduce to the hyperplane generalizations of the
center of inertia and the unique self-commuting Newton—-
Wigner position operators respectively.3-4 The commu-
tators of these quantities are

[Z,, Z)] = in[(SP,/P?)z, /R 2

— (SP,/P?)Z,/R2 — (P,P/P2)S, /R?],  (3.40)
[Syv’s}\p] = lﬁ[(éup - PuPp/Pz)S)\“

— (6,5 — P,P,/P2)S,, + (6, — P,P,/P2)S,,

-, —P,P,/P2)S, ], (3. 41)
[Z,Su]=ik[(6,, —P,P,/PEZ,

— (6,, — P,P,/P%)z, + (SP,/P2)S,, /R?

— (SP, /P?)S,,/R2]. (3. 42)

Now using Eqgs. (3. 29)—(3. 42) we find

[Yﬁ'e‘(nL Y)\Ce("l)] = [Zﬁ/(nP)z][Sp)\ - Sponc(P)\ /nP)
- UZJp(Px/nP) + S)\on"(P“/nP)

+ 0z, (P,/nP)], (3.43)
(Yg-t-(n), Y¢-i-m)] = (i7/P2)[Syn — S, ,n°(Py/nP)

— 02, (Py/1P) + Sy ;n(P,/nP)

+ 0Z\(P,/nP)], (3. 44)
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and

[Ye-s-(m), Y= ()] = 0. (3. 45)

Note that the hypersphere generalization of the center
of spin still retains commuting components. More will
be said of this result later. Here we wish to state that
while we recognize the mathematical utility of self-
commuting position operators we would call for increas-
ed attention in the direction of “nonself-commuting”
position operators such as the center of energy and
center of inertia. There is, for example, no a priori
reason for expecting that the independent measurements
required for the localization of a dynamical property on
any hypersphere will be compatible.

Let us now turn to a discussion of the equations of
motion. The My and o derivatives which occur in these
equations are complicated by the constraint (3. 17).
Hence we have found it convenient to define the restrict-
ed 7, derivative by

6 d

_— c

bna T e

9 4,c=0,1,2,3,4.

NN e (3. 46)

Expressed in terms of My and o these derivatives are

[ 9 g 9 02 9
—=—t —pr =t — = A =0,1,2,3 3. 47
50 a0 R2' ag~  R2 30 /1,23 @3.47)
and
] 0 d
—_———— Ae—e—no0—pn=0,1,23. 3. 48)
onH onk Tt an K do # T (
The constraint (3. 17) can also be rewritten as
n,n* —02/R% = 1. (3. 49)
Thus, in the limit R —» ® we have
0
2 5,9 (3. 50)
éo 30’
5 ? N
—_—] o —— —_, 3.51)
dpulo  apw T an (
and
=1, (3. 52)

so that we recover the usual hyperplane derivatives and
constraint equation in Minkowski space.3

Now it will be recalled from (3. 22) that Y, (n) trans-~
forms like
UMY, (An)UH(A) = A2Y,(n) + a,nPY (/o (3.53)

under a homogeneous de Sitter transformation where

4 _
A“ = a“/R. (3. 54)
Consequently for infinitesimal transformations
U + 6w3)=[—(i/Zh’)Jawa“” (3. 55)

each of the position operators satisfy the generalized
Heisenberg equations of motion

nPY (1)
o4

6YA(U)+15Y>\(71)>
o0 R2 gne
(3. 56)

[B“, Y)\(T])] = l‘ﬁén)\ —iﬁ<7]“
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and
[qu! YA(T’)] = iﬁ(bukyp(n) - 5“>\Yu(77))
6y oY
+ ih'(n,, A1) —n NG
L ooy

). (3.57)

The interpretation of terms such as 6Y,(n)/d0, 6V, (n)/
onk, and nPYp(n)/o depends on the dynamics of the sys-
tem and the definition of ¥, (n). In all cases we find that

lim [neY,(n)/o] =1 (3. 58)

which is equivalent to the constraint satisfied by hyper-
plane dependent position operators in the flat space
limit.3

Turning to (3. 56) and taking the limit R — «, we have

. 8Y \(n)
(B, Y\(n)] - in <6“)\ -, - > (3. 59)
If we set
P“ = }lii_l;r; Bp (3.60)
and
Y, (n,0) = lim Y (n,), 3. 61
(M5 0) im 5 (1) (3.61)

then (3. 59) can be rewritten as

oY
[P, Yi(n,, 0] = z’h’(ﬁw\-—nu a—(: (n“,o)). (3.62)

The physical interpretation of (3. 62) is readily accom-
plished by noting that for instantaneous hyperplanes
n, = (1,0,0,0), (3. 62) reduces to

[Pi’ Y]-(O)] = iﬁéi]" i,j = 1’ 2, 3, (3.63)

[Py, Y;(0)] = ik an(o), (3.64)
oo

[Py’ YO(O')] =0. (3. 65)

Thus, Eq. (3. 63) is the canonical quantization of the spa-
tial momentum and position, and Eq. (3. 64) is the Heisen-
berg equation of motion which determines the change of
the position in the Heisenberg representation with time.

As we mentioned earlier the de Sitter space analog of
the center of spin retains commuting components. Con-
sequently, if as the analog of the operator corresponding
to the intrinsic coordinates (2. 19) we take the operator
function RY, (n): Y41 (n), then for the case of YS- 5-(n) we
obtain the result

[Xﬁ-s-(n),Xg-S-(n)] =0. (3.66)
Most of the effort that has gone into studies of the locali-
zation problem in Minkowski space have focused atten-
tion on finding localized states, which would be simul-
taneous eigenstates of the Cartesian components of the
position operator, or in some other way singling out
position operators with self-commuting components.
Consequently, we felt the need to indicate the existence
of such an operator in a coordinate system of de Sitter
space for which the geodesics assume a particularly
simple form.
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4. CONCLUSION

Making use of the minimal pseudo-Euclidean embedding
space of a Riemannian space-time of constant curvature
and its associated group of rigid motions, we established
the connection between the hypersphere parameters
used to denote spacelike slices of de Sitter space and the
hyperplane parameters used by one of us in studies of
the localization problem in Minkowski space.3 Argu-
ments have been presented to justify the interpretation
of spacelike hyperspheres in a de Sitter universe as
appearing instantaneous to some inertial observer. We
found a set of coordinate systems that were useful in the
localization problem. They possess the property of des-
cribing all geodesics by linear equations. This is
achieved at the expense of introducing a nondiagonal
metric tensor. Finally, we identified and interpreted
some position operators for a quantum mechanical sys-
tem in a de Sitter space of positive curvature. The
position operators considered, reduce to operators that
have been extensively studied in the flat space limit. It
was noted that there does exist a self-commuting posi-
tion operator in de Sitter space.

We did not look for detailed quantitative differences
with the corresponding results in Minkowski space since
a plausible radius of curvature would be so large as to
render such differences insensible. Rather we were in-
terested in the qualitative conceptual differences that
are required for interpreting the localization problem
in a spatially finite universe of constant space—time
curvature.

Note added in proof: In a paper by Aghassi, Roman, and
Santilli, J. Math. Phys. 11, 2297 (1970), the inhomogeneous
de Sitter group ISO(3, 2) was used to generate position
operators for special relativistic quantum theory by the
contraction to G5, a five-dimensional Galilean group.
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The principal differences with the present work lie in
the use of the group of motions in a 3 + 2 embedding
space, the imposition of physical interpretation only
after contraction, and the use of proper time dependence
in place of hyperplane dependence,

'T. O. Philips and E. P. Wigner, Group theory and its applications,
edited by M. Loebl (Academic, New York, 1968), p. 631.

K. C. Hannabuss, Proc. Camb. Philos. Soc. 70, 283 (1971). In a
reduced (i.e., three-dimensional) model of de Sitter space, a
horosphere can be visualized as a constant time parabola
characterized by a null vector.

3G. N. Fleming, Phys. Rev. B 137, 188 (1965); G. N. Fleming,
Phys. Rev. B 139, 963 (1965); G. N. Fleming, J. Math. Phys.

7, 1959 (1966).

‘M. H. L. Pryce, Proc. R. Soc. A 195, 62 (1948); T. D. Newton and
E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949). Further references
can be found in Ref. 3.

>The literature in this area is extensive. See, for example, F. Giirsey,
in Group theoretical concepts and methods in elementary particle
physics, edited by F. Giirsey (Gordon and Breach, New York,
1964), p. 365; O. Nachtman, Commun. Math. Phys. 6, 1 (1967); G.
Borner and H. P. Diirr, Nuovo Cimento A 64, 669 (1969).

¢By natural clock is meant one that measures proper time.

"E. Schrodinger, Expanding universes (Cambridge U. P., Cambridge,
1956). There M, 4 is designated by the pseudo-Euclidean R .

SE. Indnii, in Group theoretical concepts and methods in elementary
particle physics, edited by F. Giirsey (Gordon and Breach, New
York, 1964), p. 365.

*We note that the same number of independent parameters are
needed to specify a hyperplane in Minkowski space-time as are
needed to specify a hypersphere in de Sitter space-time, see G. N.
Fleming, Ref. 3.

1°A similar equation may be found in J. L. Synge, Relativity, the
general theory (North-Holland, Amsterdam, 1960), p. 263.

"The reader is referred to G. N. Fleming, Phys. Rev. B 137, 188
(1965) for the detailed and completely analogous treatment of each
of the position operators to be studied in the embedding space.
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We present a simple derivation of the Schwarzschild and Kerr geometries by simplifying the Finstein
free space field equations for the algebraically special form of metric studied by Kerr. This results in a
system of two partial differential equations, the Laplace and eikonal equations, for a complex generating
function. The metric tensor is a simple explicit functional of this generating function. The simplest
solution generates the Schwarzschild geometry, while a displacement of the origin by iz in this solution

generates the Kerr geometry.

1. INTRODUCTION

The Schwarzschild geometry and the Kerr geometry?
are very fundamental in general relativity theory and
have numerous applications in experimental relativity
and astrophysics.2 It is clearly desirable to have as
simple a derivation as possible of these geometries
and to understand fully their relation to each other.
From the beginning it has been known that the para-
meter “a” of the Kerr geometry is a measure of the
specific angular momentum of the source of the field
and that for the case a = 0 the axially symmetric Kerr
geometry reduces to the spherically symmetric
Schwarzschild geometry,! In this work we will give a
mathematical interpretation of the parameter a. We
will first reduce the Einstein free space field equations
for an algebraically special form of metric to a simple
system of two partial differential equations, the Laplace
and Eikonal equations, for a single complex function.
The metric tensor is a simple explicit functional of this
complex function, which we may call the generating func-
tion. The most obvious solution of the partial differen-
tial equations generates the Schwarzschild geometry.

A displacement of the origin of the coordinate system
by an imaginary amount ia in this solution leads to
another obvious solution, which in turn generates the
Kerr geometry. This result is similar to that of Janis
and Newman,3 who “ complexify” a radial coordinate to
turn a Schwarzschild geometry into a Kerr geometry;
the difference is fundamental, however, since the “ de-
rivation” of Janis and Newman (their quotes) is an

ad hoc procedure which may or may not yield a solution
to the free space field equations. In our approach the
complexification, which is performed on the generating
function, is both well motivated and rigorous, in that it
clearly must lead to a solution to the free space field
equations.

Our purpose is twofold. In addition to demonstrating

the mathematical relation of the Kerr and Schwarzschild
geometries, we intend that our derivation should be
pedagogically complete and as elementary as possible.
As a bonus the structure of the equations reveals a very
close similarity to classical Newtonian theory.

Our approach is algebraic and parallel to the geometric
approach of Kerr and Schild4 and of Kerr, Schild, and
Debney.5 These authors present a method of determin-
ing all solutions with the special metric form which we
will consider. More recent work of Perjes,® and
Parker, Ruffini, and Wilkins7 on the problem of several
charged Kerr—Newman?® sources in equilibrium starts
with a slightly different metric form;but it appears
that a similar and interesting interpretation of their
results should be possible.
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2. EDDINGTON’S FORM OF THE SCHWARZSCHILD
METRIC

In its original and most widely known form the Schwarz-
schild line element is®

ds? =[1 — @2m/7)|dt2 — [1 — 2m/¥) 1dr?

—7r23(dg? + sin?6d¢p?), (2.1)
where m is the geometric mass of the source. In 1924,
Eddington obtained an alternative form that is very
useful for our purposes.l0 By introducing a new time
coordinate

f=1t+ 2m log[(r/2m) — 1], (2.2)
he obtained the line element
ds? = (dt)? — dr2 — y2(d62 + sin26dp2)
— (@m/y)di + dr)?, (2.3)
or,in Cartesian coordinates
ds? = (1) — (@x* + dy? + dz?) — 21
« (df L xdx + ydy + zdz)2
7 )
¥2 = a2 + 92 + 22, (2.4)

This is simply a flat space line element plus a term
with interesting properties. We may write this line
element as
ds? = g gdx°dxB =n .dxodx® — 2mi l dxdx8, (2.5)
where 7, is the Lorentz metric and I, is a 4-vector
given explicitly by

1, = (/7)172 (A, x/v,5/7,2/7). (2.6)
This 4-vector has the remarkable property that it is

null with respect to both the Lorentz metric .5 and
the true metric g 5.

When the metric of an Einstein space can be cast in
the form given in (2.5), it may be shown%11 that the
space is not of Petrov type I, the most general form.
This is equivalent to the statement that the separate
Debever—Penrose principal null directions must num-
ber less than 4,12 Such a space is termed algebraically

Copyright © 1973 by the American Institute of Physics 52
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special or degenerate. Since the metric form (2.5) im-
plies an algebraically special or degenerate space we
will refer to it, for brevity, as degenerate; this does

not imply that the metric of any algebraically special
space can be cast in this form. In the remainder of

this work we will assume a degenerate metric form,
The purely algebraic problem of simplifying and solv-
ing the Einstein equations is thereby greatly facilitated.

3. DEGENERATE METRICS AND THE EINSTEIN
EQUATIONS

Motivated by the preceding comments we now begin our
formal development by assuming a degenerate metric,
written as

gap = Nop — 2ml 1y, (3.1)
where [, is a null 4-vector with respect to 1 g, the
Lorentz metric,

1 lgn*® =0, (3.2)
This is the form of metric originally assumed by Kerr,2
and Kerr and Schild.4 The constant m is an arbitrary
constant, i, e., we demand that (3. 1) be a solution to the
Einstein free space field equations for any value of m.

It is easily verified that the contravariant form of the
metric tensor is

geb =nob + 2micB (3.3)
and that indices on the 4-vector I, may be raised and
lowered with either the true metric tensor or the
Lorentz metric; for example,

o=gaTl, =¥, 7,=0, (3.4)
The 4-vector [  has other interesting properties; since
it is a null vector

el . =1,0%,=0, (3.5)

Also the covariant form of this relation holds. To see
this, note that

{ghir = —m@eay), 10, (3.6)
from which it follows that
Pl =14% . =0. 3.7

The field equations themselves are much simplified by
our choice of metric. As follows from definition (3. 1)
the metric determinant is |lgll = — 1, so that

{Bo;} = (log“’_g)m :O, (3.8)
and the field equations contain only two terms
Ryv z—{gu}la-i-{ﬂﬁ}{aﬂu =0. (3.9)

Since the metric tensor is a first order polynomial in m,
R‘w is a fourth—order polynomial in m. Because m is
arbitrary each order must vanish separately, which
leads to the following four sets of field equations:

ner{pv,p], = 0:order m, (3. 10a)
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2m(lte{uv, p)) |, — n®onBMBy, o)lav, A] = 0: order m?,

{3.10b)

1B1aneo(Bu, o]lav,A] + 1e1*nBo[Bu, A ][av, o] = 0:order m3,
(3.10¢)
1o0°1B By, ollav,A] = 0:order m*4. (3.10d)

The order m? equations form an identity by virtue of
the properties of [, already noted in (3.4) and (3. 5),
while the order m° equations lead us to an interesting
new vector. Equation (3. 10c) leads to

—ml v, =0, (3.11)

where

v = By g =Bl o, (3.12)
Thus v¢ is a null vector; it is moreover easily seen to
be orthogonal to the null vector /%, From this we may
infer that v* and I* are proportional at each point and,
thus, are related by

vV = v

=— A, (3.13)

o

where A is a scalar field. (This has the physical inter-
pretation that the vector field /* is tangent to a family
of geodesics,13)

We will defer discussion of the order m2 equations
until later and proceed to simplify the order m equa-
tions. In terms of the D'Alembertian operator (02 =
(22/8¢2) — V2 and a scalar L defined by

L:—la"u:*‘lala, (3.14)
the order m equations (3. 10a) may be rewritten in con-
venient and concise form:

—0%,,) =[(L+A),],, +[(L +A),],,. (3.15)
(The scalar L also occurs in the study of geometric op-

tics in a Riemann space and is related to the
expansion parameter ¢ in the notation of Pirani.13)

Up to this point we have not assumed any symmetry of
the metric. In our further development in the next sec-
tion it will be convenient to consider only the case where
the metric is stationary, or independent of {. In the
stationary case any solution of the order m equations

is automatically a solution of the order m?2 equations

as we will show in Sec. 5.

4. SIMPLIFICATION OF THE FIELD EQUATIONS

In the stationary case it is possible to reduce the field
equations to two simple partial differential equations
for a single complex function. These differential equa-
tions are the Laplace and the Eikonal equations. The
simplification is achieved by slightly lengthy, but ele-
mentary algebraic manipulation of the order m equa-
tions (3. 15).

We begin by introducing a unit 3-vector A ; to replace
the space components of .9

L=1gx, Ap; =1 “4.1)

7

The unit length of A is a consequence of [ being a null
vector, The order m equations (3, 15) then read
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V3(1,2) = 0, (4. 2a)
v2(l02A]_) - [(-L +A)lo]|j1 (4. 2b)
V22 ) = (L + A ] + [+ ANr ). (4.2¢)

These second-order differential equations can be mani-
pulated to give a useful set of first~order differential
equations to replace (4. 2c). We expand (4. 2¢) and use
(4. 2a) and (4. 2Db) to cancel terms, and obtain

Ny a0 = [200/ (L + A e = PN 2 (4.3)

It is possible to solve (4. 3) for 1, in terms of x, by
the use of matrix algebra. We denote A;,, by the ma-
trix M so (4. 3) reads

M +MT=(1/p)MMT, 4.4)
Moreover, from Eq. (3. 13) and the unit length of A we
see that A is in the null space of both M and M7, that is

)\k,jxj:O, MXx =0, 4.5)
A= 0, MTx=0,
It is remarkable that Eqs. (4. 4) and (4. 5) determine the
matrix M, up to one real parameter, in terms of x. By
a rotation R of coordinates the vector A may be placed
along the x axis

1
()
0

In these rotated coordinates, A’ is in the null space of
M’ = RMRT and M'T, It is, therefore, obvious that M’
must have the form

0,00
M’ :RMRT=<0 ' )

(4.6)

@.n
] '

0!V

Due to the invariance of matrix algebra under rotations,
Eq. (4. 4) holds for the matrix M’ and also for the 2 X 2
submatrix N’

N + N'T=(1/p)N'N'T. (4.8)
But this implies that N’ is related to a 2 X 2 real unitary
matrix U by

U=I-—(1/p)N', UU+=1. (4.9)
If U is proper and has a positive determinant we can
write it in terms of only one real parameter 6 as

cosf — sind
U=1{ . , (4.10)
siné coso
so M’ may be written as
, 0 0 0
M =i)(o 1 — cosé sin }. (4.11)
0 — sin6 1 - cosd

We have here assumed that U has a positive determi-
nant, since if we allow the determinant to be negative,
the resulting solutions to the field equations cannot re-
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present an isolated point mass. We must now rotate
back to the original coordinates to get M = RTM'R,
Using the orthonormality of the rows and columns of R
we obtain

M, =p(1 — cosb)b,, — R{;R )+ p sinfe,,, Ry,. (4.12)
It is fortunate that only the first row of the matrix R
appears; we denote this by the vector R. To relate R to

A we now impose the conditions in Eq. (4.5), and find
that

A=RR-2), AXR=0, (4.13)
Thus R = = A; since the overall sign of the matrix R is
arbitrary we may choose the plus sign. We may now
write M, or A; |, in terms of only A; and the arbitrary
parameter 6 as

X =p(1—cos6)(6,, — A,2,) +p sinfe, A, (4.14)
This represents a most useful simplification of Eq. 4. 3).
It replaces a nonlinear relation between the first deri-
vatives of A; by an explicit expression for A, in terms
of A;. The price we pay is the introduction of the ar-
bitrary parameter 6.

A consideration of the algebraic content of (4. 14) will
now lead directly to the simple differential equations
discussed in the introduction. We first rewrite (4, 14)
with new parameters o and B replacing p and 6,

M= ald,, — X)) + Be, N, (4.15)
This is more than a minor algebraic simplification
since we will show that o and 8 conveniently determine
the metric. From this expression we immediately ob-
tain

Va=20 V XX=—28\ (4.186)
The Laplacian of A may be obtained in two ways; directly
from (4. 15) we get
VA =Va —AVa- ) —2a?2 + 82\ +VB XA, (4.17)
Alternatively we can take the curl of V X A from (4. 16),
expand with a vector identity, and use (4. 16) to simplify
the result to

VIN = Wa + 2{VE X A) — 4B2. (4, 18)
By equating these two expressions for V2X we get an
expression for Va

Va =—VB X A —A(Va 1) — 2(a? — B2)A. (4.19)
From this we obtain the important results
Va-x=p2 —ao2, Va = B2 —a2)x— (VB X2a). (4.20)

Analogous relations for g can also be obtained. From
(4, 16) we can calculate, similar to (4. 20),

VB A =— 2a8. (4.21)

By forming Va X A from (4. 19) and using (4. 21) to sim-
plify, we obtain the gradient of g:

VB = — 2afr + Va X A, (4.22)
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The vector relations (4.19)-(4. 22) can be reexpressed
in concise fashion by introducing a complex function
y = a + i8. In terms of this y Egs. (4. 19)-(4. 22) may
be written

VY'R.=~*'y2,V'y=‘“’y2l + 1(V'y X A). (4.23)
The importance of viewing o + if as a single complex
function should be stressed. In terms of y the Kerr and
Schwarzschild solutions have a transparent relation,
as discussed in the introduction. Moreover our further
algebraic development is very easy in terms of v,

Our remaining tasks are to obtain differential equations
to determine y, and to show that y then uniquely deter-
mines x; and [y, i.e., the complete metric, Thus the com-
plex function y is a generating function and contains full
information on the geometry. To obtain the first differ-
ential equation we form the Laplacian of y and use
(4.16) and (4. 23) to simplify. Then we obtain Laplace's
equation for y
V2y =0, (4.24)
so that y is a complex harmonic function, A second

equation is nonlinear and follows from squaring Vy in
(4.23)

(Vy)2 =4, (4.25)
An alternative and useful form of this is
Vw2=1, w=y7 (4.26)

which is the Eikonal equation, familiar in classical
optics. The function y is thus seen to be a complex har-
monic function whose inverse satisfies the Eikonal equa-
tion. (Our y is related to F, of Ref.4 and 5 by y =
V2/F,.)

Now that we have a system of equations for y it remains
only to show that A; and [, are determined uniquely by
y. It is possible to solve (4.23) directly for A; we first
rewrite it in terms of y~1 = w

AVw=AVw*=1 Vw=»2a+iVwXx2a), (4.27)
From this
Vw X Vw* =— i[Vw* + Vw] + Ba, (4.28)

where B represents the coefficient of A, which depends
on A and w. However, we can solve (4. 28) itself for B
and thereby obtain A very simply; we dot Vw into (4. 28)
and use (4. 27) to obtain

B =141 +Vw -Vw*] (4.29)
and thus
A=[Vw +Vo*—ilVw X Vo*)]/(1 +Vw-Vu*), (4.30)

which is manifestly real. Thus we see that a knowledge
of y specifies A uniquely via an explicit equation; it is
easy to verify this solution by substituting it into (4. 15).

Our final task is to show that /, can also be obtained
from y. We will in fact invoke Egs. (4. 2a) and (4. 2b) to
show that a solution is /2 = a = Re,. Using this as a
trial solution we first calculate the left side of (4. 2b),
V2{aA), using the fact that o is harmonic. This
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Laplacian simplifies with the use of (4. 15), (4, 18),
(4.20), and (4. 22) to

V2(ar) = Via2 + g2), (4.31)
To get the right side of (4. 2b) we return to (4. 3). Set-
ting { = j in (4. 3) and summing we see that the left
side is twice the divergence of A, or 4o, while A, A, .=
2(a? + B2) from (4.15). Thus (4. 3) leads to
A+ L) =(ly/alla® + 82), A+ L), = a2+ g2,

(4.32)

where [32 = « is the trial solution. From the above
two equations it is evident that Eq. (4. 2b) is indeed
satisfied by /,? = «. Since a is Rey and harmonic,
(4. 2a) is also satisfied. It may be readily shown that
this solution is unique up to a multiplicative constant,
so that we have finally
lo2 = ka =« Rey. (4.33)
Our results can now be summarized. We have reduced
the order m free space field equations to the pair of
equations (4. 24) and (4. 26) and the recipes in (4. 30)
and (4. 33). Thus to solve for the metric we find a har-
monic function y whose inverse satisfies the Eikonal
equation. The metric components [, and 1, and thus !
are generated by the explicit expressions (4. 30) and
(4.33). The complex function y plays the role of a
generalized Newtonian potential in that it obeys Laplace's
equations and Rey = {;2. (The function /,2 must be pro-
portional to the Newtonian potential in the limit of small
m, as is well known in the linearized theory.)

5. ORDER m? EQUATIONS

We have indicated that any stationary solution to the
order m3 and order w equations automatically satisfies
the order m?2 equations, Now we will show this. The
order m?2 equations (3. 10b) reduce immediately to

[Z(ZO(A) | cx+ ldlﬁlﬂla— l(xlﬂlotlB ~A2]lylu = 0' (5' 1)

In the stationary case this implies the scalar equation

—2LA) L Tl — A% =0 (5.2)

From the work of the preceding section it is easy to
show that

li|jljli:[(A“‘L)li]u+L2a (5.3)

1 \pl gt = A% — L2, '
Thus (5. 2) becomes

[(4a+1)],=0. {5.4)

However if we set ¢ = j in the order m equation (4. 2¢)
we find that

V2(1p2a2) = V2(1p2) = 0 = 2[(A + L)1}] ¥ {5.5)
s0 that (5. 4) becomes an identity.

6. THE SCHWARZSCHILD AND KERR GEOMETRIES

We now obtain the simplest solution to Egs. (4. 24} and
(4. 26). In analogy with Newtonian theory we consider
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y =71 =[x2 +y2 + z2]-1/2 (6.1)
as a solution to the Laplace equation. It is easily check-
ed that -1 = 7 also obeys the Eikonal equation, so y =
r-1 is a generating function. The metric functions
generated by Egs. (4. 30} and (4.33) from y = »-1 are
I2=7r1 X =x/r, N =3/v, rg=2z/r, (6.2)
which leads to the Eddington form of the Schwarzschild
line element (2. 4).

If we now ask for the simplest generalization of the
above solution we are led to consider general displace-
ment of the origin, i.e,,

y=71=[lx—a)?+(y—ay)? +(z2—a3)?]/2, (6.3)

This satisfies (4. 24) and (4. 26) for any choice of a;.
However, this solution merely represents a physical
displacement of the coordinate origin if the a, are real,
which is of no physical interest. If the a; are imaginary,
however, we have a new result, By a suitable orienta-
tion of the three-dimensional coordinates we may, with
no loss of generality, write an imaginary displaced y

function as
y = [x2 + 32 + (2 — ia)]"1/2, (6.4)

The metric functions generated from this by (4. 30) and
(4.33) are

3 + —
502:__L~__, M:Bﬁ_@_’, A, =Y T ax
pt + a2z2 a? + p? a? + p2
A3=%, (6.5)
Jo
where p is the real part of w = ! and is a solution of

p? — p2(r2 —a?2) — a?z2 = (6.6)

Corresponding to the metric functions in (6. 5) is the
line element

ds2 = dt2 — (dx2 + dy2 + dz?2)

3
_2mp dt + —L—(xdx + ydy)
2 2
as +p

o4 + a2z2
2
+ % (ydx— xdy) +z—dz> . (6.7)
a? + p? P

This is the Kerr line element in a form given in Ref. (1).

7. SUMMARY AND FURTHER COMMENTS

The Einstein free space field equations simplify for
the case of the degenerate metric to the Laplace and
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eikonal equations (4. 24) and (4. 26). Solutions to these
equations generate the metric tensor via Eqgs. (4. 30) and
(4.33). We have used these results to show that the
generating function for the Schwarzschild geometry be-
comes a generating function for the Kerr geometry if
the origin is displaced by an imaginary amount.

Further work is under way on the application of similar
algebraic techniques to the spinning charged source
geometry of Newman et al.,8 the many source geometry
of Perjes,® and the problem of the interior Kerr solu-
tion. The uniqueness conjectures of Carter and Israel
14,15 are also under consideration in the context of the
degenerate metric form.
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In the second of this series of papers we study the six principal discrete series of unitary irreducible
representations of SU(2,2). The same techniques are used as before, except that to examine the
reducibility we are forced to use complexifications of all of our spaces. It is found that when restricted
to the Poincaré group, two of the series contain only timelike momenta—with positive and negative
masses, respectively — and a finite number of spins; the remaining four series contain spacelike
momenta and spins which allow a certain helicity. A point of interest is that these two classes require

entirely different scalar products.

I. INTRODUCTION

In a previous paper (Ref.1,to which we shall refer as I),
we constructed representations of the spin-covering
group SU(2, 2) of the conformal group SO(4, 2) in the

two principal continuous series, and showed how they
reduced when restricted to the Poincaré group P. We
now consider the principal discrete series of represen-
tations. We shall assume acquaintance with the notation
and conventions of I, and refer to the equations of that
paper where necessary,

Recall then that we established our representations by
operators on a space of functions defined over the six-
dimensional manifold ¥ = {a, @, b,c,w,®}. In the series
d, we found immediate irreducibility; but 4, was re-
ducible and we needed to introduce the two subspaces

of functions analytic in Reb 2 0 for vanishing w. This
was a consequence of our still using Y, whereas a more
natural treatment (as outlined for example by Graev?2)
would introduce a different manifold. The problem is
greatly aggravated for the principal discrete series;
for the natural treatment in this case requires a mani-
fold that is different indeed from that which we have
used. Let us remind ourselves briefly of this treatment.

The discrete series of representations then are induced
by those of a compact Cartan subgroup, for instance that
generated by {J, 2Ly — Py, 2L, + P,}. Consider the
space H of functions f(Z,¢,w), where Z,&,w € GL(2,¢),
which satisfy the following conditions.

1. For fixed ¢ and w,f is a polynomial in Z,,,2Z,,,and
|Z|, homogeneous in the first two variables together
and the third by itself; similarly for fixed Z and w,and
variable £.

2. For fixed Z and &,f is analytic in the elements of
w in the domain :ww* < 1 (the generalized unit disc).3

3. SISl — @), 01— BwT)12,0]|2 |1 — ww*|-4
X dp(u) du(v)du(w) = || FiI2 < o,

where u, v € U(2),du(x) is the invariant measure, and
du(w) = I1 d(Rewi]-)d(Imwi]-). The integration is over all
unitary matrices # and v and over the manifold §2.

Then a scalar product is defined in H to agree with this
norm, and parametrising any g € U(2, 2) by

— o 6
=7 1)

we set

To: f(Z,E,w) =flZ(a" + Yw) L, E(pTwT + 371,
(wB + 8) 1 (wa + )].
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This defines a unitary representation of U(2, 2) which

is specified by four integers—the degrees of homogeneity
referred to above. Graev has shown? that there are five
other representations with the same integer parameters
(he calls the above “type 1) and that these six are all
irreducible and mutually inequivalent. There are no
other unitary discrete nondegenerate series,

This then may be termed the canonical representation
of the discrete series. It is clearly quite unsuitable for
displaying the behavior under the Poincaré group [al-
though extremely convenient for the reduction U(2,2) O
U(2) X U(2)] because of the manifold of matrices {Z, ¢,
w} which appears as the basic parameter space;and
indeed the remaining five irreducible components of
the series d are still more complicated. Obviously it
is desirable to construct the representation instead
over our manifold Y; this can be done by allowing the
three parameters (m,ip,,ip,) of (I.21) to take integer
values, and we are then left with the twin problems of
reducibility and construction of a scalar product.

To examine the reducibility we are forced to consider
not a space D, of functions over Y, but rather a space
D over the complexification Y, of Y. It transpires that
we can find six submanifolds of Y, which are invariant
under all transformations of the group, and so D breaks
down into a sum of six invariant subspaces D¢ of func-
tions with certain analyticity properties. On these
spaces we can then somewhat formally write a scalar
product and thereby constitute our representations as
unitary and irreducible.

Closer examination of the product, however, shows that
the representations fall into two distinct classes, which
we shall call dj(timelike) and d3?(spacelike). (We show
in Sec.V that these names are justified.) The inner pro-
duct actually takes entirely different forms on the two
classes (the distinction was hidden earlier by a foriaal
regularization), and we examine them separately in Sec.
IV, where we find that for the timelike series the scalar
product makes essential use of the complex nature of
Y., whereas for the four spacelike series we can intro-
duce a Hermitian form into the boundary-value space L
and ignore the “off-shell” continuation », This situation
can be understood better by examining the relationship
between Graev's representation and our own. It can be
shown quite straightforwardly—we do not do so in this
paper—that Graev's space H for type I representations
can be mapped onto our space T*, which transforms
under dg, and that his transformation law becomes ours.
The boundary ww* = 1 of his domain £ maps onto the
boundary Y of the manifold Y,. Now his functions are
analytic in certain domains; we can therefore specify
them uniquely by their values on the boundaries of these
regions (by the generalized Cauchy theorem), and so we

Copyright © 1973 by the American Institute of Physics 57
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can construct the representation on the boundary-value
space. But to define a scalar product, Graev needs the
entire domains and not merely the boundaries: This is
the situation we find in our treatment of dg.

For the four spacelike series d8i,which Graev does
not discuss, the situation is different because we no
longer have polynomial dependence on the elements of
the matrices Z and £, but rather an analyticity require-
ment. We can therefore construct the scalar product
with differential operators (which was impossible for
dj since the requisite operator annihilated the entire
space of polynomials) and genuinely restrict ourselves
to the boundary manifold ¥ and functions thereon. The
situation is very similar to the usual treatment? of the
discrete series of representations of SL(2,R), even up
to the redefinition of our carrier spaces modulo the
kernel of the differential operator, which is also the
union of the pairwise intersections of the six irredu-
cible subspaces of D.

The plan of the paper then is as follows. Section II in-
troduces various complex manifolds and their transfor-
mation properties, and Sec.III constructs the unitary
irreducible representations by means of operators on
function spaces over these manifolds. It turns out that
the three parameters (M, L, K) specifying the represen-
tations must not only be integers but also satisfy a
parity relationship: (L + K + M) must be even. Section
IV discusses the scalar product in more detail, espe-
cially for the spacelike series,and shows that for them
the representations can be extended to further values
of the parameters.

Section V then shows how the representations reduce
under the Poincaré group P,and justifies our calling
them timelike or spacelike. The series d; is shown to
contain only a finite number of spins, and all positive-
mass momenta;d; has only negative masses. The four
spacelike series d8’ contain all “spins” that allow a
certain helicity, exactly as in I. Finally, Sec. VI com-
ments on our results. Two appendices contain material
whose inclusion in the body of the text would be un-
desirable.

Il. GROUP ELEMENTS AND COMPLEX MANIFOLDS

We recalll that our group G, which is isomorphic to
SU(2, 2), is defined by the antidiagonal metric tensor
which corresponds to the quadratic form 7124 + Z—223 +
Z,Z4 + Z,Z,. We now define a standard set of ele-
ments g; such that any g € § can be written as a finite
product of these elements; instead of examining an arbi-
trary element of the group it will then be sufficient to
consider each g, separately. We shall take as our set
the translations Z and the dilation a:

1 dl (1)
el ) o)

together with the three block-diagonal matrices suffi-
cient to cover the SL(2,C) subgroup. Their (2, 2) blocks
are

(o G ()

and the (1, 1) components are given by (1. 7); the remain-
ing components vanish. Finally, we introduce two further
elements:
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These are discrete operators of G, either of which is
sufficient for our purposes although sometimes one is
more convenient than the other. That J with the others
covers § follows since JZJ = ZT; this is the operator
considered by Castell.5 The sufficiency of B now follows
too because of the relation

B = z,Jz,Jz,,

where z,; is the element of Z specified bya =0 = ¢,
b = i, An analogous formula expresses J in terms of
B. Notice that all these elements except d,J and B
belong to the Poincaré group.

We now define the manifold Y, which is the complexifi~
cation of Y of (I.10). This is the set of all complex mat-
rices of the form

1 5
u 1 i
Y= -memmmmmmmmmem A-mmen . 4)
a b ' 1
]

wa+c wbh+d 1w 1

The relation Y, € § restricts Y, to Y: We shall refer to
this as the boundary. The parameters then satisfy
u=—w, d=-—a, Reb = 0 = Rec. (5)
Associated with Y, is the manifold A, which is the com-
plexification of A:
At —ppagt
AaT

-------- (6)

-
I
P TP

on its boundary A € § we have (among others) the rela-
tions

Ay =A. ("

Since both Y, and A, define subgroups of GL(4,C}) =§,,
which on their boundaries belong also to §, we can de-
fine a transformation of Y, under G, which on the bound-
ary reduces to the familiar form of (I, 13):

Vo8 = AV, (8)

The reduction of the discrete series representations
will then involve determining transitive domains of Y,
which are invariant under all g € §. The transforma-
tions under Z,d,and ¢ are almost trivial, but the re-
maining ones are less so; we give them here for con-
venience. Under £ of (2) we obtain

a' = a— bE, w=uw+E,
b’ =0, _ _ u':u—g, (9)
¢’ =c—at —dE + btg, A =1=12y,
d =d — bg, A=1=4,,
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while under I,

az—d, w’=—w'1,
b'=c, w =—ul,
c'= b A =w, (10)
d'=—a, Aj=-—u,
A =1= Al’
and under B,

a' =— iab™1, w' = i(wb + d),
b'_bl W = i(ub — a),

= (bc'— ad)bl, A =1=2,, (11)
d':—idbl, A =i =A,.

Notice that the new parameters are in each instance
analytic functions of the old.

Il. DISCRETE SERIES OF REPRESENTATIONS d,

Consider the representation (I.21) of the principal con-
tinuous series d, of G; it is clear that upon setting

ip, = K, ip, = L,where these are positive integers, we
shall obtain another representation:

TP: f(y) = AKX |A| L& m 2y mf(y!)
yg =Ny’ (12)

(Notice that we have set ip, = K and not 2k — 1 asin L.
The change is trivial.) The functions f belong to a cer-
tain topological vector space Dy (K, L, ) of functions
such that both they and their “inversions” T, [, Ty f are
indefinitely differentiable in all variables, and this con-
dition specifies the asymptotics of the functions for
large values of their arguments; further details will be
found in Appendix A.

Now let us extend (12) to a representation of §,=GL(4,¢)
by writing it as

TO: fly.) = AL 1AL X F(yl),
v.g& =AY, (13)
= 2 L K - 1
( m) (14)

where f now belongs to a space D of functions over ¥,
which satisfies similar requirements to D,: It will be
specified more closely when this is relevant. Suppose
that both p and ¢ are nonnegative integers;then since
we know from the last section that not only the mapping
g: Y, = Y_ but also the parameters A,x,and A, are ana-
1yt1c in the six variables {a, b, ¢,d; u, w}, the transforma
tions (13) preserve analytlclty Therefore the problem
of subspace reducibility is just one of finding all sub-
manifolds of Y, which are § invariant. It is convenient
to work with the functions of © themselves rather than
those of D, which are their boundary values,and so we
shall henceforth remain in the complexified domains
unless otherwise stated.

A. Reducibility
We start by examining the quantity T given by
=@+ b)c+c)— (a+d)a+d). (15)

On the boundary, T = 0;and off, it transforms under §
by

gT - T =]A|l2T (16)
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so that the two regions T > 0 are invariant under all

£ € . We can reduce this still further, by noticing that
T > 0 is divided by the surface (b + b) = 0 into two
parts which are themselves invariant; we shall call
these two domains T*:

T+ ={Z, | T > 0,— (b + b) 2 0}. (17)

The space D can then be decomposed into three sub-
spaces: of functions which are analytic in 7% or 7, and
functions which are not. (Notice that we cannot have
analyticity in the entire domain 7'< 0.) It is clear from
the remarks above and the transformation law under

B € § given in (11), that the analyticity in Z={a, b, c,d}
is preserved only if we also have analyticity in « and w;
and hence, because there are no invariant regions in
the space of these variables if T> 0,any dependence
upon them must be polynomial if the analyticity is to be
preserved. This therefore defines two subspaces

D* C D, of functions which are analytic in Z in T+,and
polynomial in # and w,

Now let us return to the domain 7'< 0. We consider
the two expressions

Q=(+C)+w@+d +a@+d +wdd+b),

— - 18
=(c+c)—ula+d) —aula+d + uid +b), (18)
and find that
Mo =29
g ’ (19)

g U~U = |x[20U,

so that the regions ,U % 0 are preserved too. It is
trivial to verify that the conditions for the equations

2, U = 0 to have a solution for w,u is indeed T < 0. We
can therefore define four further invariant subspaces of
D, of functions which are not analytic in z in either of
the regions T > 0 (nor, of course, in T < 0) but which
are analytic in # and w in one of the four domains TO%,
where the notation is obvious; and we shall dencte these
by :DOi.

Then the union of the six subspaces Di = {D*, DO} de-
fines the space D. The pairwise intersections are

DN D = D* N DO, DOIN DO = M(u,w),
(20)
where M(z,u,w) is any multinomial in these variables
and M(u, w) is any multinomial in # and w whose coeffi-
cients are nonanalytic in z in both domains T*. We
therefore redefine © and all of its subspaces D¢ modulo
the subspace &, of functions which for fixed z are poly-
nomial in # and w, and for fixed %, w are nonanalytic® in
z in both domains T*:
E=U
Z?‘]
We have then decomposed D/ into six disjoint invariant
subspaces D* (we shall not explicitly write Di/8). These
are the six irreducible subspaces of Graev; and on them
the operators T9 of (13) act irreducibly.

M@E,u,w) =

DN DI, (21)

B. Scalar product
We assert that a possible scalar product for the series
i s
§is
(/,8); = Reg. [, T ey )] #2[T(e) &
X [Uy )1 2g(y)dun(y,), (22)
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where ©,U,and T are given by (18) and (15), and the in-
tegration is over the analyticity domain T appropriate
to the representation dj. (For example, over all w and
u,and z € T* for the series dy;or over z € TO and the
analyticity domain in the 4, w planes for one of the d§+).

Because of the transformation laws (16) and (19), this is
invariant under all g € G;and because none of the quan-
tities @, U, or T change sign in the domain T¢, the norm
of a function f € D! is of definite sign, provided the in-
tegral converges. Consider the asymptotic behavior of

the integrand: Then we know from the appendix that this
is

If 1~z wlelule

(remember that D is defined now modulo &), so that the
integral certainly converges at infinity. There remain
only the divergences due to the zeros of T,,and U, and
the regularization is designed to remove these. We
have not been able fo cast this rather complicated func-
tional into any more attractive form in the general case,
but shall in the next section examine separately the two
regions T7<O0and T > 0.

C. Discussion

We have now constructed the six unitary irreducible
representations df, of the principal discrete series of
G, by the operators T acting on functions in one of the
six spaces Di/§ with scalar product (22). Because the
situation is a little involved, we make a few remarks
on it here.

At first glance,the structure in w and u of the spaces
D* and DO? appears quite unrelated. But consider the
two subspaces D¢ of functions analytic in w outside the
circle & = 0 in the w plane, and suppose that T increases
steadily from negative values, Then the circle shrinks
to zero as T vanishes, and for positive values there is
no trace of it left. If we follow the evolution of the
spaces D07 in this process, we find that functions are
eliminated with singularities progressively nearer the
origin, until at last {i.e.,for T > 0) the space embraces
only functions which are analytic everywhere, that is,
polynomials: The spaces have become D*, and the sub-
spaces of functions analytic within $2 = 0 have disap-
peared entirely, This pictorial argument displays the
similarity of structure of all the Dt

It might be thought that since the surfaces @ =0=U
can be regarded as dividing the domain T < 0 rather
than the u or w planes, we could decompose T9 into
functions of z analytic in one of these four regions, for
fixed w and . Irrespective however of the fact that
only QU > 0 define possible domains of analyticity, this
decomposition cannot be invariant under § because the
conjugates # and w must enter explicitly in order to
specify the boundaries of the regions.

Now turn to the redefinition of © modulo &. This is en-
tirely analogous to the well-known procedure? for the
discrete series of SL(2,R) ~ SU(1, 1), where we take

for carrier spaces of its representations the spaces of
functions analytic in the upper or lower half of the com-
plex plane, and then redefine them modulo their inter-
section—the space P of polynomials. Not only does this
remove any common elements, but it also ensures con-
vergence of the scalar product; indeed, P is the degener-
acy subspace,and all elements thereof have vanishing
norm. & plays a similar role.
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This brings us to the scalar product (22). The form
given there has the advantage of being applicable to all
six subspaces D¢ ; but it is obviously extremely awkward
to handle—in particular, we have not defined the exact
regularization procedure. Indeed, we shall be able to
extract several formally distinct functionals (we expect
them to coincide on any irreducible subspace D¢, but
this may not be immediately obvious) depending on our
precise freatment of this problem: as a simple example
of this, see Ref. 7, Chap.IlI, Sec. 2. Closer examination
of the inner product reveals that a most important dis-
tinction must be drawn between the regions T > 0 and

T < 0: In the latter case U and Q2 have zeros, while in
the former they do not. The regularization will there-
fore be quite different in these two regions, and we shall
examine them separately inthe next section, where we shall
see too that § is indeed the degeneracy subspace and
that the scalar product for T < 0 [and hence the repre-
sentation (13)] can be extended to the case when p or ¢
takes the value — 1,

IV. ALTERNATIVE REALIZATIONS
A. The series d

We have not been able to introduce a nondegenerate
scalar product into O for the two series dj, and so
cannot discard altogether the spaces L*. We can, how-
ever, show that the Hermitian functional defined by (22),
when the “regularization” is effected by taking the resi-
due of the generalized function at its singularity, is of
definite sign;and also that it is degenerate upon the
subspace of multinomials M(z,u,w) = D* N L. The
demonstration is technical and we confine it to Appen-
dix B.

B. The spaces 0

The situation here is of much greater interest, since a
scalar product does exist upon the “boundary value”
space 9)8. We start by examining this space,

DY then is the boundary value of DO, It is clear that
the z dependence of a function in D is restricted by
the condition that it be not the boundary value of a func-
tion analytic in 7%; passing to the Fourier transform
(as in I Sec. VB) we find that this implies8 that f(p)
vanish for p,p, + p, b, < 0. We shall return to this in
the next section.

Now consider the dependence upon w and w, that is,upon
w and u. We have at first glance four regions £ > 0,

U % 0 from which to take boundary values;but it is not
difficult to see that when « — — w and z_, - 2, then

QU > 0. This means that of the original four regions,
only two survive, and we can decompose iDg into two
subspaces only: of functions which are boundary values
of others analytic either in £ > 0 and U > 0,0r in
Q<0and U <0,

This leaves a second reducibility to be sought; but we
already know? of one such, Introduce the variables

a=a+ bG, o
= by
- _ (23)
Yy =¢+aw— aw + bww,
w,w;

these parameters were denoted p,o,and 7 in I because
the labels a,,and ¥ were preempted, but the present
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notation is preferable. Then we showed in I that trans-
formations of the first principal continuous series d,
preserved analyticity in 8 + 8% 0 and hence that

Dy(k, ip, m) reduced accordmgly Clearly the same is
true for the representations (13) and the space
®8(K, L,m), and so each of the two u, w-boundary-value
spaces can in turn be split into boundary values of func-
tions analytic in Reg8 > 0 or Rep < 0,

This then gives us four subspaces of $D8. Notice that
the B-reducibility did not appear in the last section,
where we dealt with D0 itself, because the regions

B8 + B8 2 0 are invariant only when all the remaining
parameters take their boundary values; its appearance
here is perhaps a consequence of the fact that the co-
efficient of the highest power of |#| in U or |w| in £
is just (B + B).

C. Scalar product upon DY

We introduce the four parameters N;:
2N, =L—K+m,
2N, =L —K—m,

WN;=L+K~-m,

(24)
2N, =L+ K+ m,
and the notation wA*# = wAw3, which will be a useful
shorthand. Since Ny =g + 1, N, =p + 1,all the N; are
nonnegative integers. We now consider the sesquilinear
form

(f,&) = [ F(mal™z afoNs™ap kg (y) aply),  (25)

where the notation of the left-hand side anticipates its
role of scalar product. The (partial) derivates are

)
3 =2
Y dw labe
im0l w5l 1% nl
da da 0b ac
0
=35 [cf. (23)] (26)

a,t,w

and do not commute;d, is the operator denoted & in
(1. 28) sqq. Notice that these are just derivatives with
respect to the parameters w (I. 20) and x (I. 25) that do
not belong to the manifolds Z and Z.

We assert then that (25) is invariant under all g € §.
To prove this, we remark that by using the set {gt} we
can show that the operators (26) transform as
g9, — 3, =2a2a719 ,
. (27)
g:8y ~» 0 = A2(n;)"10;

then invariance of (25) under g, = z,d,¢ and ¢ € a fol-
lows almost trivially, and we are left with only the two
elements / ¢ a and B (or J). Now under I,f € D trans-

forms as
TP : fla,b,c,w)=|w|™ L K24 mf@,c,b,—wl)

= ™ TGN f(y') (28)
and 3, = |w| 29,, 8’ = w248, from (27); hence the form

(25) becomes
(101, TP8) = [ 0™ r 0™ 1 f(y)
X (w23, ]2 [ w2851 [w20, ] ™4[ w| 28,

x {w! ™Gt ir ()} du(y). (29)
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[We have used the Jacobian of (I.14), written this in
terms of the transformed variables y’, and dropped
primes.] Observing that N, + K = N,, etc., we use the
identity

»
|:x2 g}] ¥l pg(x) = x1*¢ g W (x) (30)
several times and deduce finally that
(TIOf’ TIOg) = (flg)‘

We can examine the action of B in a similar way, and
once again we obtain invariance. Therefore (25) is in-
variant under all the g, and hence under all g € §. We
must now show that this functional is both Hermitian
and positive-definite, if we are indeed to use it as a
scalar product. The first is simple: Mere commutation
reveals that

N *Ny AL ANa*N, - K K o Ny*Ng nL ANy *N
G=0,1"208,0,% 495 =050,% 29502 1 =GT  (31)

and so the Hermiticity is manifest.

We have not, however, been able to find a general proof
of the positivity. It is easy to show that if L = K + |m/|
then the differential operator becomes
G = 0koLak KoL ok,
- L-
- a}ﬁ{auL_J aEu Kaﬁaé{’

m >0,

m < 0; (32)

this defines a norm in accordance with (25),

1712 = JFB)GAy)auly), (33)

which is clearly of definite sign if L — K is even, and is
indeed definite too if L — K is odd, by virtue of the ana-
Iyticity of f in one of the two half-planes RefS 2 0,
[Compare the treatment of SL(2,R) in Ref. 4.] Notice
that this special case corresponds to p or g having the
extreme value of — 1, and hence defines an extension of
the representation (13) of the four series dd* to those
values of the parameters. Similarly, if K = 0, we obtain

G = au(me)/z aéL-m)/zaéa%“M)/2 aéum)/z, (34)

which is manifestly of definite sign;but for other com-
binations of L, K, and »m we cannot put forward a general
proof. We have, however, examined a very large number
of special cases, and in every one the norm turns out to
be definite upon the S-Dg", involving sums of terms in-
cluding powers up to order K of the second order
operator (9,9; + 9,9,) when we rearrange the deriva-
tives in G. Some typical examples are

L=6K=2m=0, p=1=q,
G = w2B2B2[P2w2B282 — 16(ad@ + be) fwdB
+ T2(aa@ + bc)2]f2w2w2 ,
L=5K=2,m=—-1, p=0,g=1,
G = w2wp[B2w2pw2B2 — 12(aa + bc) BwPLp
+ 36(aa + bc)2 B pow?,

where we have strictly temporarily written the argument
instead of the derivative, eg.,d; — 8 etc., in order to
emphasize the essential features. We remark that the
definiteness of sign (whether positive or negative de-
pends upon the parameters and upon which space DJ?

35)
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we are considering) rests upon both the analyticity in
the variable 8 and the fact that the Fourier transform
(with respect to z) f(p,w) of f vanishes when

(b, + Pop.) <0,s0that — (3,8; +3,8,)f is always

of the same sign as f itself,? Notice that this differen-
tial operator commutes with all the others in the above
expressions. While the investigation of particular in-
stances does not furnish a general proof, nonetheless
we feel that the special cases we have considered do
not have any specially restrictive features, and that the
norm (33) is indeed of definite sign upon any one irre-
ducible subspace T3%. In this respect our investigation
is incomplete, and a correct proof would be welcome.

Finally, consider the kernel of G: This will be the de-
generacy subspace. A full description of it is to be
found in Appendix A; here we only note that it does in-
deed contain the space 6 introduced in the last section
(more correctly, it contains its boundary-value space
from D onto Dy), so that redefining D modulo & is in-
deed just equivalent to redefining it modulo those ele-
ments with norm zero. It is appropriate to point out
here that we cannot define a scalar product for Dj in
this way because G annihilates that entire space.

V. REDUCTION UNDER P

There are apparently two problems involved in the re-
duction of the six series d} when restricted to P: the
structure of the carrier spaces D¢ (or of their Hilbert
space completions under the scalar product, 3¢}) gives
rise to restrictions upon the functions 1nv01ved and the
scalar product itself is quite different from any that we
are accustomed to. For the first principal continuous
series dj, we explicitly removed this latter difficulty in
I (Sec.VB) by essentially using the square root of the
differential operator in the scalar product (I. 28) to map
J,(k,ip,m) onto a space isomorphic to ¥,(—%—1,1p,
m); since the whole process was invariant under

g e P C§,we were left with an inner product without
derivatives, which coincided in value with the original
one and was invariant under P (but not under arbitrary
&£ € §). The situation with the discrete series is less
simple, and we cannot explicitly define such an operator;
however, the problem is essentially superficial, since
the representation is actually specified by the operators
TO and the spaces D / §,and so it is in fact unnecessary
to concern outselves W1th it.

The first problem however is very pertinent, and in this
section we investigate how the representations of P
which occur are governed by the structure of the ;.
The appearance of P in this matrix realization was
studied in I, Sec. 5, and we shall not discuss it further
here; we do however remind ourselves of the alterna-
tive parametrization (I.15) of Z:

a=ixg— %y, b=1ilxg+ x3),

¢ =ilxg— %3), d=ixg+x, (36)

and notice that the complexified manifold Z_ can be
parametrized by letting the four real variables x, be-
come complex,x, = x, + B,.

A. The series d}

Recall that T* is characterized by analyticity in 7* and
polynomial behavior in # and w. Consider first the
former restriction, and introduce the parametrization
(36) of Z: Then the T* become

u
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~3%2>0, 9,2 Of. (37)

Since the variables %, are indeed just the space-time
coordinates, the 7* are the forward and backward tube
domains, The condition of analyticity in T* then tells

ug8 that the Fourier transform10 f(p w) of
f(x,,w) € D} is concentrated in the reglon pp¥ >0,
po> 0: That is, only timelike momenta with pos1t1ve
energies can occur. For T- we can have only negative
energies.

T*={x“ +iyu|yg—y%-—y%

Now turn to the w dependence of f € D*. This is poly-
nomial, of degree p in w and ¢ in &;and so f transforms
under a nonunitary finite-dimensional representation of
SL(2,C) C P when regarded as a function of w, @ alone,11
Indeed, introduce the usual notationl? (j,, j,) to specify
such a finite-dimensional representatmn of SL(2,C);
then f transforms under (j; = %p,j, = z4), which is
just (p + 1)(g + 1)-dimensional. The spin content of
such a representation is well known: All spins are in-
cluded between | j; — j, | and (j; + j,). We therefore
have

Theorem 3: When restricted to P, the representation
dg (dy) of the principal discrete series of § associated
with the parameters (K,p, g) contains a direct sum and
integral over all the principal series representations of
P with real and positive (negative) rest mass and spins
s satisfying

lp—ql <2s<(p+q.

Each representation enters with unit multiplicity.

B. The series d9

We consider the boundary-value spaces Sbgi of Sec.IVB
rather than their complexifications, since it is the mani-
fold Y rather than Y, which has the physical signifi-
cance. We see immediately that the lack of apalyticity
of f € DO in either of the tube domains T* implies®
that f(p ,w) is concentrated!? upon p,p# < 0—that is,
that only spacehke4 momenta can occur As in I, analy-
ticity in 8 [c.f. (23)] in the half-plane Rep > 0 1mp11es
that for vanishing w,® the transform f (p 0) vanishes
too if (py + p5) < 0: This does not 1mpose any restraints
upon the representations of the Poincaré group which
occur, but only upon the basis functions.

We are left with the analyticity in @, U >< 0, and once
again it is clear that no restrictions upon the actual
representations of P are implied. There remains only
the covariance implied by the representation label

m = q — p (see I, section Va), and this is dealt with as
before. We obtain

Theorem 4: When restricted to P, each representa-
tion dg‘ of the principal discrete series of § associated
with the parameters (K,p, q) contains a direct sum and
integral over all the principal series representations of
P with imaginary rest mass (i.e., spacelike 4-momenta)

which allow a helicity of 3(q — p) Each representation
occurs with unit multiplicity.

VI. COMMENTS

We have now constructed and reduced all the six repre-
sentations d} of the principal discrete series, but cer-
tain problems still remain and have not been completely
solved in this paper. Among these are the following:

(i) What is the precise connection between the four
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domains 2,U % 0 of Y, for T < 0 and the introduction
of analyticity in 8 when we restrict ourselves to Y ?
(i) The representations d3* are defined for p and/or
gq taking the value — 1 (see Sec.IVC); apparently the dj
are not—we cannot have polynomials of this degree.
(ii1) We have not found a proof that the norm defined
by (25) is actually of definite sign on DJ?/§ for general
parameter values,3

(iv) Exactly what restrictions upon the matrix elements
of P needed to expand f € D§* are implied by the ana-
lyticity in &, U 2 07

Resolutions of these questions would be of interest, and
we hope to return to them at a future date. Finally, we
summarize the results we have obtained in these two

papers on the principal series of representations of G:

Series Analyticity K,L,m Reduces to

dy - ipy, g, m all p,

dy Analytic in Reg > 0 K= —1,ip,m  pg+ py > 014
dy Analytic in Reg < 0 K=>—1/dp,m py+py<01d

Analytic in T7
Polynomial in w, &

dy As for dg but analytic in T~

K+L+meven p2>0p >0
L—K—|m|22 m<25< L~K—2
p2>0p, <0
w<285< L—~-K--2
K+ L+ meven ,o
L——K—Imlzop <0

dp

Nonanalytic in T*

d()z'
0 See Secs ITIA,IVB

Where no other restriction is indicated, the spins S which
occur are all those allowing a helicity of 3.

APPENDIX A: STRUCTURE OF CARRIER SPACE D,

We consider the three transformations I, B, and J intro-
duced in Sec. 2, and find that in the complexified space

D(y,),
T,: f =28 wa+ c)p(ud — c)if (% ,%

_wb+d ub—-a)
wa+c¢ ud—cf

?

&

>
,A’

(A1)

= (inyK1r (& _1. bc—ad_‘ 4a.
T, =@ (G5 5 g
T,f(a,b,c,d;w,u) = wPuqf(_ d,C,b,—— a;— w'lﬁ— u_l)’

i(wb + d), i(ub — a)).

where A = bc — ad. Then all these transformed functions
must be Cx;in particular, finite at all finite values of the
arguments. This implies that asymptotically, f behaves
as

f~12,(ad — be)}* Hu, (a — bu), (c — du)}?

x {w, (wa +¢), (Wb + D)}, (A2)

where, e.g.,

{x,y ’ 2} "= E
jrerlsr

For the two spaces D*, the latter two brackets are multi-
nomials; the first is an asymptotic series, which by vir-
tue of its definition can actually be differentiated term-
by-term to yield such a series for the derivate uf the
function itself. For the remaining four spaces all these
are asymptotic series. We observe that the fastest that
a function can grow is

Cop XIVH 21, (A3)

[~ Z2E'Pra 2 ya wh, (A4)

Now let us consider the kernel of the differential opera-

J. Math. Phys., Vol. 14, No. 1, January 1973

63

tor G introduced in (31). By a process of repeated inte-
gration one can show that this consists of all functions
of the form

Jo = M{tw,a,c)+ Mil(w,a,c)

+ MPE1(Z) + Pf(w) + P{(w), (A5)

where M, is a (nonhomogeneous) multinomial in w, a, ¢
of total degree L — 1, whose coefficients are quite arbi-
trary functions of w,a,and b; P; is a polynomial of de-
gree p in w,whose coefficients are analytic in w (i.e.,in
u) and arbitrary in 2. The remaining terms are simi-
larly defined. (We have restricted ourselves to the
manifold Y here so as not to have extra,irrelevant
terms in & and % separately).

The kernel of G is clearly not contained entirely in ;.
If we restrict it to Dy, however, we see that it contains
multinomials in z and polynomials in w and @, and hence
contains the intersection subspace § C Dy of (21); un-
fortunately, it also contains the entire subspaces Dy,
and so G cannot be used in the detinition of an inner
produce for those spaces.

APPENDIX B: POSITIVITY OF SCALAR
PRODUCT FOR d?

We make the substitutions
(a+3)=y1 +z'y2,
(b+5)=y0+y3,
(c+e)=yo—y3,

Yo=7,

y =rte, (B1)

where 0 < < 1 and € is a unit 3-vector. Then (22) im-
plies that the norm of a function f € D* is given by (we
omit irrelevant numerical factors)

lfll2= fd4z f0w7‘2K-P‘q-3 dr

x [l - 2yeieze (y,r, 04, (B2)

where
®,(y,7,1)
= [{wa+1) + fleg(w + @)
+iey(w — @) + ex(wd — V22 {@wu+ 1)
— tle (u + u) + iey(u— #) — eyun — 1)]}a72

X |f@z,y,w,u)|2DwDud?Q,. (B3)

Since there are no singularities in the region of integra-
tion, ®,; < «, we suppose further that f is such that

(1 — t2)K1¢, is nonsingular at { = 1;then it is certainly
regular at all other points,and the integral in (B2) con-
verges. (This assumption is essentially technical). The
r integration has a simple pole when K is an integer,

and we can take its residue as the integrand of the final
expression, to obtain

hrie

- Jasz (%)m (fo1 (1 — 12y K1 t2¢1(y,r,t)dt)

r=0
(B4)

The only quantity depending upon 7 is | /|2, Therefore
this becomes

[ asz fol (1 — 2y k1248 fQp2Uye?

(@) 17es e ]

d2Q ,DwDu, (B5)
0

r=
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where ©; and U, are the expressions in braces in (B3),
and f is f expressed as a function of the new para-
meters.

We see at once that if / is polynomial in 7,that is, if

f is multinomial in z ;,this vanishes; and this is inde-
pendent of our assumption of the regularity of

(1 — t2)K1&,(y,r,t). Therefore M(z, w,u) is indeed
the degeneracy subspace. To show that the form is of
definite sign, we recall that f(z,) is analytic in T*. 1t

is then easy to show by considering the Fourier trans-
form that (d/dr)N | f |2 is itself of definite sign (whether
positive or negative depends upon N), and this solves

the problem,
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Dyadic algebra has been applied to the problem of propagation of an electromagnetic discontinuity in a general
lossless anisotropic medium (Z and 7 positive definite symmetric dyadic quantities). It is seen that the wave
normal and ray equations and, hence, the equations of the wave normal and ray surfaces, take a coordinate-
independent explicit form. The optical axes of the medium are also discussed.

INTRODUCTION

Dyadics were introduced by Gibbs! some 70 years ago
as an extension of the vector notation to mappings in
3-space. Since then, not being restricted to a vector
space of three dimensions, matrix and tensor notations
have outweighed dyadic notation in physics. The power
of the dyadic notation however lies in its independence
of any coordinate system and in a proper use of the
multiple products as introduced by Gibbs. Among the
areas in which dyadic algebra appears well suited are
electromagnetic field problems in anisotropic media.

The purpose of this paper is to present a dyadic formu-
lation of the well-known problem of propagation of an
electromagnetic discontinuity in a general anisotropic
medium, If € and [T are the constitutive dyadics, the ear-
lier considerations known to this author have applied
matrix calculus in a coordinate system in which the
matrix [f]-1/2[€][]-1/2 is diagonal.2 Hence, the re-
sulting equations of wave-normal and ray surfaces do
not show the functional dependence on the constitutive
parameters but instead, give us an algorithm to calculate
the equations for any given [€] and [[Z]. The dyadic pre-
sentation which follows, is seen to result in an explicit
expression on € and [, which is independent of any
coordinate system.

WAVE NORMAL AND RAY EQUATION

As a starting point we apply the equations for a propa-
gating electromagnetic discontinuity?

VY X H* = — D*, (1)
vy X E* = B¥, (2)

where Y/(7) is the wavefront function and E*,H* D* B*
are field vectors at the time ¢ = (¥ ). Denoting vy =5
and defining a vector §, called the ray vector, by

5 x E*xH*)=0and s-p = 1,we have from Egs. (1)
and (2)

P X H=—D*, (3)
P X E* = B¥, (4)
§ X B*=—E* (5)
§ x D* = H*, (6)

The constitutive relations are supposed to be of the form
D = &-F, %)

(8)

=

|
Il

i
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where € and i are symmetric positive definite dyadics.3
Because this treatment uses the geometrical optics
approximation, the dyadics € and g must be considered
as algebraic quantities, i.e., they do not contain differen-
tial operations (nondispersive medium).4 Now, from
Egs.(3), (4), (7), and (8), the field quantities B* D* and
either E* or H * can be eliminated, giving two equations:

[E—i1XppI'E* =0, (9)
[

It is to be noted that the existence of €-! and i~ follows
from the assumed positive definite property of € and 1.
Correspondingly, from Egs. (5)-(8) we have

~ €18 ppl-H*=0. (10)

=

(E—pE&Ls55]-D* =0, (11)
[i1—EX55]-B*=0. (12)

The conditions for p and 3 for the nontrivial case arising
from Egs. (9)-(12) can be evaluated using dyadic iden-
tities (see Appendix), whence it is seen that (9) and (10)
give us the same relation

det(@— p1 & pp)=det(p—er X pp)=0, (13)

and that, we must also have
det(e-l! — I X 58)=det(i! —€X 55 =0 (14)

These equations are of sixth degree in p and 3, but use
of the dyadic identity

det(A +B) =detA + 3 AL A:B+4A:B

(15)
and others (see Appendix) leaves us with equations of
fourth degree:

(L:PP)E:pD)

_ -1 X
(deti)(dete)

ﬂ\ll

1pp+1=0, (16)

-1:335) (e

€:55+1=0,

(17)
Equations (16) and (17) constitute the wave normal and
ray equations for a propagating discontinuity in a general
anisotropic medium in dyadic notation. They are seen
to be coordinate independent.

( :5 5)(detl)(dete) — i &

i

From Eq.(16), the dispersion equation of a time-harmonic
plane wave propagating in the anisotropic medium can
be easily deduced, replacing p by &/w, where % denotes
the wavevector. Equatlon (16), then, is valid for temporal-
ly and spatially dispersive media,i.e., € and [I may be
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functions of w as well as 2. The following conclusions,
however, do not apply for spatially dispersive media.

A dyadic dispersion equation corresponding to Eq. (16)
for a plane wave propagating in a medium with u = 7
and € = ¢,T, has been presented before.5 (It has been

attained through an indirect attack via tensor calculus.)

Also, plane wave propagation in a medium with both €
and p dyadics has been considered.® The resulting dis-
persion equation differs from our Eq. (16) with p replaced
by %2/w mainly only in the definition of the double dot
?rogl]uct which is different from the usual [see Appendix
Ad)].

WAVE NORMAL AND RAY SURFACES

Denoting p = pu and 5 = sv, where # and v are real unit
vectors, we may write (16) and (17) in the form

(1/p)d — (G- X €L:am)(1/p)2
+ ME1 X Aliam)(Et

(/) — (R E:oo)1/s)2 +5(A & s

XX

el:am) =0, (18)

7o)€ & €:77) = 0.
(19)

Now it can be shown? that if the dyadics A and B are

real, symmetric and positive definite, then A & B is
symmetric and positive definite and the following in-
equality,

(A% B:ww)2 = (AY A:aw)B % B:aw), (20)
is valid for all real vectors w. [For B = 0 the equality
sign implies the existence of a scalar a such that

(A + aB) ¥ @@ =0)]. Applying this to Egs.(18) and (19)
we see that we are able to write

Vp =L (Fr¥etemm) + 2 (B8 &1am)?

— (g1 g ptian)(E-r 2-1;,;,;)]1/2}1/2 (21)

(22)

and 1/p, 1/s are seen to have two positive real roots
1/p,1/p,,1/s_,1/s, [the subscripts referring to the +
signs in Egs. (21) and (22)]. From (20) it also follows
thatp_= p., s_= s,, whence the surfaces p_ (@), s, (?)
have no points outside the surfaces p_li), s_(D), respec-
tively.

If the surfaces p, and p_have points in common, the
discriminant in Eq.(21) must vanish, which corresponds
to the equality sign in the inequality (20). It can be
shown? that the equality sign is valid in (20) only if there
exist a scalar @ and a vector @ such that (A + aB) §
#ww = 0. So,there exist optical axes g, Uy only if there
exist scalars o, such that

(@t + a€l) g, =0, (23)

(& + B % o7y = 0. (24)

It can also be shown that there exist vectors ug, v, only
if o and B satisfy
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det(i! + ¢&1) =0, (i1 +aE1) ¥ (i1 +aEl):I=0,
(25)
det(f +£8) =0, (Z+DX(E+pE:T<0. (26)
If @ = @, and 8 = B, satisfy (25) and (26), the vectors
iy and 7y can be written out. In fact, because F-! + aq€-1

is planar and symmetric, the dyadic D = (g-1 + ali'lﬁl o}
(-1 + a,€1) is linear and symmetric, and so there
exists a vector @ such that D = — @a [the minus sign
arising from the inequality (25)]. Now different cases
can be separated:

(1) fE-' + a,&! = 0 whence every vector #,, satisfies
Eq. (23),i.e., the two wave normal surfaces coincide.

(2) f1+a,1=0, D=0, Then, i + a,;&1is _
linear, and there exists a vector 4 such that 7-1 + a €1
=+ bb, Now there only exists one optical axis, namely,
the one corresponding to the directions #, = + 5 which
both satisfy Eq.(23). The material is uniaxial.

(3) D = 0,whence the vector @ defined above is nonzero.
It can be shown that the four vectors ug =+ [a x T + V2
(271 + a,€1)]-d, where d is any vector which gives a
unit vector u,, satisfy Eq.(23). The material, therefore,

is biaxial.
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APPENDIX: DYADICS

A dyadic product @b of two vectors @ and b is defined by

the associative law
(@h)-¢ =ald-¢) forallc. (A1)

Dyadics Z, l:3 are polynomials of dyadic products of vec-

tors

_ N

b, B ::ZEjdj. (A2)

=1

1

k3]

Il
Mx

al

1

.
[

The following bilinear products between two dyadics are
defined: ’

A-B=Ya,6,%)d, (A3)
1,7

A:B=%@,2) 61, (A9)
[T

AY¥B=Y,xc)Exa) (A5)

i,j

Ifé,,i=1,2,3is a basis andé;:eijk[(é'jXEk)/ B
€,- EJ. X e,)] is the reciprocal basis, for every dyadic A
there exists a unique set of nine scalars o, such that
we can write

= 3 3
A=02 a, B2

i=1j=1

(A8)

Hence, there exists a correspondence between the dyadic

A and a matrix [a;;] defined by the basis & ;.
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We denote by ET the transpose of ;1:, i.e., the dyadic

satistying A,-a = a-A4 for all z,and T is the identity dya-
dic, which can be represented in a basis &, as follows:
3
7 _Z) Z 6,88 =7 eel. (A7)
i=1

11]—

Using vector algebra and definitions (A3)-(A5) we may
prove the following identities:

A:B=B:A=A;:B,=(A-B):L, (A8)
AXB=BXA=(A;XBpgy (A9)
A¥T=@:DT-4, (A10)
AX(B%O
=(A:C)B+(A:BIC—B-Ap C—C-Ay-B; (A11)
(E % ﬁ) c is invariant in all permutations of X E, E,
(A12)
(A¥B)-(CxD)=(A-C)%XE-D)+(A-D)§ B-CT)
(A13)
A3 —(A:DA2 + JA KA DA-NAZA: AT =0.
(A14)
For all bases e, we have
A:T = tr[a, (A15)
%.A:l & A: 1: = sum of principal minors of [a,,], (A16)
A X A:A =detfa, ). (A17)

These functions of A may be denoted by trz, spmz and

detz, respectively. The double cross product can be
expressed using single and double dot products:

A¥B=(A:DE:DT- A:B)T- B: DA,
—(A:DB,+(A.B +B.24),
= [trA trB — tr(A - B)]T— (trB)A, — (trA)B,
+(4-B +B-4),. (A18)

A dyadic A is complete if detA # 0, otherwige it is pla-
nar. A dyadic A is linear if A ¥ A=0. Fora planar
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dyadic Z, there exists a vector @ such that 4 - a =0,and

A can be expressed as a sum of two dyads A = bz + @2,
For a linear dyadlc A there exists a vector @ such that

Axa= 0,and A can be expressed as a single dyad A
= ba.
For a complete dyadlc A there ex1sts a umque solution

for the equation A X = B namelyX A-1.B with

A1=(3, %A,/ (AZA:A). (A19)

Also, for a complete dyadlc A there exists a unique solu-

tion for the equation A ¥ X = B, namely
X=A73B—[3A:B)/(A%A:A)A (A20)

A dyadic is positive definite (PD) if A:aa > 0 for every

vector a = 0. For a PD dyadic j, the following proper-
ties can be proven to be valid:

(i)

(ii) A-1 exists and is PD;

L3

is complete;

]|
:hll XX

(iii) A X A is PD;
(iv) trd >

(v) %(

0, spmA>0 detA>0

+ A,) = symmetric part of A is PD;

S]]

(vi) all eigenvalues of 5(A + A,) are positive.
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Perturbation theory for nonderivative nonpolynomial Lagrangians
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We present a regularization scheme for deriving finite, unitary, and causal amplitudes to each order in
the major coupling constant for nonderivative nonpolynomial Lagrangians for the self-interaction of
massless neutral scalar particles. The results are shown to contain no arbitrary constants, though these
may be introduced consistently into the superpropagator, the second-order contribution.

1. INTRODUCTION

The suggestion has been gaining momentum?! that the
traditional ultraviolet divergences of quantum field
theories with polynomial interactions can be removed by
means of suitable nonpolynomial additions. These may
naturally arise when general relativistic effects are in-
cluded or nonlinear symmetry realizations are used.
This leads to the attractive possibility of computation of
self-mass and self-charge effects,as well as giving im-
portant modifications to high energy behavior. It may
even lead to a completely new picture of elementary
particles as “black holes,” the microscopic analogs of
the collapsars expected in great abundance in the
heavens.

The main theoretical problem at the basis of such a
programme is that of ensuring that the nonpolynomial
Lagrangians being encountered do really give finite re-
sults for scattering amplitudes and contain no divergent
quantities whatsoever. We will attempt to solve that
problem in this and succeeding papers. This paper will
be limited purely to Lagrangians which have nonderiva-
tive coupling in the interaction term. Up to the present
the only method for calculation for nonpolynomial
Lagrangians has been to expand S-matrix elements in
powers of the interaction L., with avoidance of any ex-
pansion of matrix elements of L;,, in powers of any
minor coupling constants. That will be the technique
followed here, though evidently a discussion of the effect
of summation over the different powers of L, is neces-
sary at a later stage. So we will discuss the Nth order
S-matrix element in the expansion of

S = T{ei ,fLint(x)d4x}, Q)
in other words, the term
@¥/N1) [ dixys - d% g T{Lpe(%1) -+ Lige ()} )

Our problem is to show that a suitable prescription may
be formulated to calculate each term (2) so as to give a
finite S-matrix which is, in addition, unitary and causal

to each order in N. We will finally be interested in the
high energy behavior of the resulting amplitudes, in par-
ticular to determine if the localizability criterion given
for the “superpropagator” with N = 2 extends naturally
to all orders. Even for this lowest order case,N = 2,
there is considerable ambiguity due effectively to the
arbitrary high powers of A” which arise on expansion of
the superpropagator in certain minor coupling constants.
While it is certainly possible to formulate perturbation
theory in both major and minor coupling constants so that
the finite amplitudes satisfy unitarity and causality to
each order, the resulting expansion contains an infinity of
arbitrary constants. This is unsatisfactory; we wish to
show that it is possible to obtain finite, unitary, and
causal amplitudes which contain no arbitrary constants
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beyond those introduced in the original Lagrangian, It is
worthwhile to obtain such a result so as to avoid the
enormous loss of predictive power which an infinity of
arbitrary constants engenders.

We start our discussion in the next section by giving the
general formulas for the regularized Nth-order term
derived from (2). The problem of removal of the regular-
ization is briefly discussed, and then solved completely
for the case N = 3. We then show how this may be effec-
ted for each higher N in Sec. 4, and prove that the result-
ing amplitudes are unitary and causal, to each order in
N, in succeeding sections. The relation to other regular-
ization schemes is considered in Sec, 7, while the pre-
vious discussions are extended in Sec. 8 from the pure
exponential Lagrangian for zero mass particles consid-
ered so far to a class of Lagrangians including non-
localizable ones. We end the paper with a discussion of
further problems raised by the work.

2. THE REGULARIZED NTH-ORDER TERM

We consider initially the simplest Lagrangian, the pure
exponential one, for a massless neutral scalar field ¢(x),
so that

Liye = Gretor, 3)

G being the major and A the minor coupling constants and
the double dots : : denoting normal ordering. Then in (2)
the Nth-order term is, after replacing the time-ordered
product by the normal-ordered one,?

M(N) (xl' . .xN)

GV s 2
= G [dxyo--dxy: 01 ™% M, @
N i=1 i<j

where 4;; = Ar(x; —x;). In order to regularize MW of
(4), we evidently have to start with the single superpro-
pagator e**A, the case for N = 2. We will see that a suit-
able regularization of this will allow a regularization of
(4) to be given for all higher N. The regularization of

e 2 will be given by means of the Sommerfeld-Watson
representation

2
erMh =

. 2 Az
ELAZ"Anz-z—f A2zA%dz (5)

nz0 n! 2 °T T(1 + 2) tanwz’

where I is a contour encircling the positive real axis.

The contour I' is then opened out to be parallel to the
imaginary axis and cross the real axis between 0 and

— 1; we denote this contour as C,. We wish to obtain the
regularized form for M{*) in momentum space, so dis-
place C, to the right by one unit to C,. Fourier trans-
formation may then be performed to give
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4 2 ) AN
f d”x expA AL (x)+ ikx] = (exp(A°A) |1 + 1)
= @2n s (k)

+

f d )\2?.(_ p2)z—21;(431)2—22 .
C, tan(zz) sin(mz)C'z— 1)TE)'(z + 1)

(6)
We may use the fact that (— p2)?2 hasapoleatz =0
with residue proportional3 to 8(%) to rewrite {6) as

;‘EZFO i [ a A22(— p2)2-27(47)2-22 ’
T 27 tan(mz)sin(mz)Tz—1)T'E@)T(z + 1)
M

The representation (7) is still not satisfactory since the
integral along C, does not converge; the final step of the
regularization is to replace the factor sinnz in the deno-
minator of (7) by sin(l + 6&)7z, with 5 > 3, so that conver-
gence now occurs, both for spacelike or timelike values
of p, to give

z
2

22516
T
&

if dz hZz(_p2)2~2ﬂ(47y)2—2z
2%

(8)

We now wish to use this regularization to construct the
Fourier transform of the regularized version of (4), that
is, of

;G N )
MEN)(xl"'xN):‘(ZT?,‘)‘ fdx1"‘de - ,n RXICY

We first exhibit the possible four-dimensional delta
functions which arise in the Fourier transform of the
c-number amplitude in (9). To achieve this, we use the
representation

2 C
T e)\ Aij! [\
i<j 8

r r

- 2y n
ILJ<{1,N] i€l jed
i<j

2,..1C = _
e)" Al]fél {1 + 6))\ NN 1)/2’

where the product I1" involves the use of each i € I and

each j € J at least once, the summation 2 is over all ,
such products, and A’ is the number of factors in the IT.
Then we may write

r "“2\/ ]
I d*k e 7 (R,
LICLN] icljed / 7 Iﬁ ()
i<j

4 4 A-N(N-1)/2

5 (pj+ Z)kj,.) n 8% (p,) (1 + ) /
i€l rdIug
(10)

We discuss each term separately in (10), phrasing our
arguments in such a fashion that they apply to all of the
terms there and are independent of the particular term
chosen. We drop the superfluous 6 functions in (10)

and also all superpropagator factors in (10) for which
the internal momenta %; are fixed by the external mo-

S™(py e py) =

X I
jeiud
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menta., This is because the problem associated with dis-
cussing them is straightforward (involving a product of
generalized functions depending on different variables).
We thus take the superpropagators in (10) in which the
momentum %;; depends on one or more loop momenta
which have to be integrated over.

We wish to evaluate the Fourier transform
S{M (pye - by)

L r—\.../c N L
- l§1fd4kze*2“|5‘<kz) }_1:'[1 54 (p}. + §§1 kle”.), (11)

where e;; =+ 1 if the line ! is incident at the vertex j
and the momentum is directed towards (away from) that
vertex and is zero otherwise. The index runs over the L
lines of an Nth order supergraph with L < $N(N —1)
[the normal ordering in (3) cutting out loops at a single
vertex]. When L = 3N(V — 1), then we have the complete
graph with N vertices.

In order to evaluate the loop momentum integrations in
{11), we reduce these integrations to that of standard
perturbation theory by the representation’

(— p2)22 = — ¢=im/2[T(2 — 2)] 1 [~ daal-zeia(p?+ic)
° (12)
s0 that
S(N)(ﬂl’ . 'pN)
L f; 221 (4m)225 cos(1rzl)¢e—“”’l/2 w0 1-
= Il |~ zl di Zaz %1
=142 0y sin(l + &)mz, Tz, )T1 + 2;) °

L o (pPe
x i f d4kleuxg(p i€)
=1

N 4 L
z I:‘I1 5 (oj + g}l ke, (13)

i

The last factor in (13) is the usual Feynman amplitude in
momentum space for the appropriate Nth-order graph,
before the Feynman parameters have been integrated
over, and has the value

detd 1=1

where
L
8. = 2 @,8,;G;,
=1
(4,7 = N),
N (14)

Xij =9y

L
Xin+1l = Z\/

L N
XN+1,N+132 Z @, b,;0,,0;0,

and in (14) there are N independent loop momenta
dy,...-,4y chosen in some specified manner, so that

N N
k=2 a4 j@l by b; (15)
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the a,;, b,; baving values + 1 or 0. We thus have to
evaluate

ng(h“‘l’ﬂ)
. 2z 2-2 ~imz,/ 2
_& (if dz, 2""1(4m) "% cos(nz,)e "2 foodozla}_zl)
1=1\2 “Ci  sin[(1 + 8)mz,]T(z,)I'(1 +2,) 0
N _ det L
4 2 . X .
xé( -)dw e [(—-—-—"r a)}. 16
sz)lp](e) *P "\ Gete z€§1 y (16)

In order to discuss the convergence of the integrals over
o, and z; we choose the variables ¢,,...,¢, of Speer,4
defined for the region

Oso;Say,s S 1mn
by L
a, = 1H £, (18)
t=y
Thent

Lo
detg = M 171E (.. tyy),
[=
(19)
L N
detx = iL H tlgF(tl"'tL‘l}’
1=1

where E and F are polynomials in #;,...,%,_;, E does
not vanish in the region of integration, and N, is the
number of loops of the subgraph consisting of lines 1 to
1. The region of {, integration now becomes

0<t, <1 (1=0,1,.,.,L—1), (20)

To deal with the whole region of integration over the «

variables in (16), we divide it into L! similar terms;if
0 =< ﬂw“l(l) E S aw*l(l‘),

where 7 is a permutation of (1, ..., L), then the trans-

formed variables will be

L

a, = I ¢ 21

ET oo @1

with the same region of integration (20) in the ¢, vari-
ables. Thus the «, integration now becomes

w0 -1 4
b ; -2
Lo [T [0 anirOE;
TEP =1

F 1 11
xexp{itL u;E—“+ z‘e(l +2, I

— 1.
- =1 =)

A

where P, is the permutation group on L integers and
E ., F, are the polynomials constructed from detd and
dety but now by means of the change of variables (21)
instead of (18). The integration over {; may be per-
formed exactly to give

-1 g )
T 0 [ an, 0 FREIIA 4 ),
nep, 1=1 0

(23)
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where

L
1+-yL=2(N—1)—lZ)lzl.

Thus we may write (16), dropping the overall energy-
momentum conserving 6 function as

(
S5 by py)

jo{S}

=T
{

1

i dz 22 1(am)? 2% cosz,
2 “C1osin[(1 + 8)mz,]0(2,)T(1 + 2,)
iNt
e

sin(r D, 2)T(D5, 2, — 2N + 3)

X

-1

x 2y N

1 L

¥ —2(N-1+Z7
1ep, =1 fo dtt;" O (— F,) et s
cp, 1=

L
x (B, 2¥Eia (24)

We can now discuss the convergence of the various inte-
grals in this expression. Firstly the #, integrals are all
convergent at ¢, = 0 since each z, on C; has 0 < Rez,<1.
Since F, may vanish in the region of f integration, it is
necessary to take explicit account of the ieterm in the
exponent of (22}, so replacing the quantity F,/E, in (24)
by

B L
Eﬂz{Fn/E,{ +ie(l 4 e )T 20D,

This quantity is well behaved in the invariants (p;p;)
and the variables ¢; and has no poles in 2,7 z,if € > 0;

it will have exponential growth of order 7 as Z)f z, goes
to infinity parallel to the imaginary axis. We will keep

€ > 0 throughout our calculations, as is usual; we will
give a careful discussion of the existence of the boundary
values as € — 0 at the end of Sec. 4, though we imme-~
diately expect the boundary value to be a generalized
function of a standard kind in the invariants (p,p;). Fi-
nally the z, integrations will each converge for arbitrary
external momenta if & > 3, taking account of the last
factor in (24). Thus the regularization for the single
superpropagator succeeds for all the higher orders.

In order to remove the regularization it is necessary to
bend the contours C, back to the positive real axis. To
achieve this, it will be necessary to make explicit the
singularities of the integrand of (24) in the z, variables.
In other words the {; integrals will have to be perform-
ed explicitly to remove the obvious poles at y,(,, taking
negative integer values. To achieve this, we can expand
the function

Flty oo tpy)
=E;2{FH/E“ + de(l + bpog + e )]Ef 2y-2(N-1) (25)

in a suitable set of bases functions of £, - -+ {, ;. We
take for these products of functions of single variables.
If these functions are {cp,,(i)} , not necessarily assumed
orthonormal on the unit interval (0, 1), then

L
F(ty +oe by 1) =§ a(m,? zl) b (D), (26)

where we use the notation m = (my, ..., 9, 4), ¢glt) =
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Hf;% ., (¢;). Then the ¢, integrations on the right of (24)
become '

L-1 1 L L
2 nof dtltly"(l)EF<t,? zl>=2 a(m,Zl) z,) Ym,y,),

P, =1
TEP, 1)

where
L-1 1 y L-1
vm,y,) = I [ anrwe, (1) = T, el (28)

It is necessary to investigate the singularity of ¢,,(y) in
its variable y. Let us consider two simple cases for the
choice of functions {¢,}:

M) ¢u(x) =xm, Y, (y)=(y+m+ 1)1

so that Y, has a simple poleinyaty =—m — 1,

i) ¢, (x)=Q0—x)m Y, (y)+Bm+ 1,y +1)
so that ¥, has simple poles at y=—1,—2,...,—m — 1,

In both of these choices the singularities of the integrand
remaining in (23), after the ¢, integrations have been per-
formed, have been explicitly displayed. This should then
allow the contours C, to be bent back to the positive real
ones. However, it is necessary to prove convergence of
the resulting summation over m. In the case (i) above,
the coefficients a(m,Z){’ z,) are given by

L
a<m,Zl) zl) =DOF(t) [y ., (29)
while for case (ii)
L
a(my? Zz) = Dms:(t)ltzl’ (30)

where D" = nf;}/a ™/9t7't. Thus, in order to have con-
vergence of the resulting expressions, it will be neces-
sary that the Taylor expansions about 0 or 1 in the cases
(i) and (ii), respectively, converge in some polydisk about
the relevant point. And since the integration over the ¢,
variables is from 0 to 1, we expect that there will only
be convergence of the resulting summation over m if the
Taylor expansions converge in polydisks about 0 or 1
with at least radii 1, so in the regions

(1) Ag={t:1t,I<»r,, r,>1, 1s1<L—1},
(i) Ay ={t:lt,— 11 <o}, #1>1 1<l <L~1}.
We will investigate in the next section if this is possible

for the case N = 3, whenthe contours C; are modifiedto I'.

3. FINITENESS FOR N = 3

In the case N = 3, we have the explicit expressions and
values

L=N=3,E=1+t,+ Uty F=p§idt, +p3tyt, +p§t2,.

IA!

0y =1—2y, yg=3—2; —2,, y3=8—1(2, +2,+23),
so giving the following, from (23), via the choice (i) of the
previous section for the functions {¢,,}:

M2 (p1byb3)
3 (z dz, A%*1(4m)2 2% cosrz, >
=—7 Il |—
1=1\2 “C1sin[(1 + &)1z, |(z,)T(1 + 2,)
1
) 3 3
sin(r 207 2,)T(207 2, — 3)

X

xZZ}I’zl

TEP; m =1 ('yW(l) + m, + 1)

3 3
x D*{(— F, )71 #74(E )81 1 (31)
On closing the contours Cy back to I we see that the
summation over m can be performed by replacing, for

example, (yo(y + m, + 1) by [ eI o for
Imy ()~ 0;this corresponds, afger summagion over m in
(31), to evaluation of (— F,,)_‘“E1 o (E,,)G'z1 1 at values

t, = e """ g0 to points on the unit circle. However,E,
can then vanish at such points, for example, at the point

ty =ty =—3% +iV3/2

So we do not expect the summation over m in (31) to con-
verge after the contours C; have been distorted back to
the real axis, when the values of Rez, can become arbi-
trarily large and positive.

It is possible to discuss this case by means of the ex-
pansion about t = 1, case (ii) mentioned in the previous
section. For E, is nonzero in the region A, as can be
seen by direct inspection. Taking

t,-=1+zi (i=1,2),
then

E=3+2z,+z2 +2:z,.

Thus E has a zero at
2y =— (3 +22,)/(1 + 2,)
and for |z,| < | it is necessary that

fr,8) =8+ 372 + 107 cosf < 1

where z = r¢%, But for cos § > 0, the minimum value of
f(r,8) is 8, while for cosd < 0 the minimum value of f is
for » = 1 if |cos8| > 5, with value (11 + 10 cosé), and
for 7 = — (10 cos6)/6 if |cose| < &, with value (8 — 33
cos26). In all of these cases f is positive, so that E does

not take the value zero inside A;.

For the choice (ii) of the previous section, we have

3 /1
MgS)(p1p2p3) - T I <— je le
=1 1

11’€P8 m =1

A2%1(am) 2% cosz, ) « 1
2 sin(1 + 8)mz,T'(z,)T(1 + z,) sin7 Z}f zll"(Z)f z,—3)
- +Zaz
2 Tim, + DI + y,) e PRt ot — PRty — PRty TR
<Y 0 (m; + DI + v D® (— prgylats — Prytaly Eﬁam) 2 . 32)
T2+ m, +y.) (1 + by + £15)1 518 -1
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We may close the z; contour round the real axis, picking
up residues from the poles at z5 = n3/(1 + 8), ny =

]

2z 2-2z
u® I(4m)

s (D1bab3) =

! cosmz,

72

1,2,---,orat z; =n§ — (21 + z,),n§ = 4,5, -+, though
not from those in the term in curly brackets due to the
unwritten i€ term, to give

Tim, + 1)T(1 + y()

X427

1
— 1 (z z, 2 2o
4r(l + 8) ;=1\2 C sin(l + 8)mz,T'(z,)T(1 + 2;) T€p, m =1

cosmng(l + 8)a,(m,z, + z5, + ny/(1 + (5))7\2

I‘(2 + WZZ + 77((!))

n3(47r)2—2n3

ny T(ng/(1 + 8)T(1 + ngy/(1 + 6)) sin{nfzy + 25 +n5/(1 + (2, + 29 +n3/(1+6)—13)

1+m

(1)

5 costlzy + 2,202 ) (4y)

2-2(z,*z,) ’
! zaﬂ(m,n3)

=, sin[(1 + 6)m(ny — 2z, — z,)['(n}

We may now let 6 — 0 in the last bracket of (33),in other
words introducing a different & for each z variable. We
then close the z, contour around the positive real axis,
picking up the res1dues from the poles at z, =1,/
(1+8,), ng=1,2,++-,0rat z, =nh —2;. Th1s pole

—z; —2,)T(1 +n§ —2zy —2,)T(ng —3)

22 2-22
(3) AT (4m) ! cosmzy

s (P1bap3) = ‘[1

47'_)2 2n3(_

lsin(1 + 81)mz1T(2)T(1 + 2;) m )=

(33)

[
arises both from the factor sin7(z; + z,) in the denomi-
nator of the last bracket of (33) as well as in the factor
I'(4 — 2, — 2,), though only for 5 + m, > n}, when it is
thus a double pole. The total contribution in (33) is thus
(at the same time letting 6, — 0 for simplicity):

"2(4m)? 2"2T(1 + my)T(4 — 21 — nx)T(1 + m )T — 2,)
Ty)T(1 + ny)T(6 + my — 27 — 1, )T(3 + my — 24)

l)nza(m,z1 +n, +ng)

x|

+

3 I‘(ns)I‘ + n3)T'(zy + ny + ng — 3) sinmzy

ny sinmz T(ng — 27 — 7)1 + g — 2,

{1 + my)I'(1 + my)T(z —21))‘2

(— 1) 2 cosn21AZ("IS_"Z_ZI)(M)z_z21_2"2a(m,né)
—ny)(n; —3)

2'.2(411_)2-222

Gl
+ 7y, —
y 02

3

TG+ my—2zy —2,)T(B + my —2,)T(2; + 25 — 3)T(2)T(1 + 23)

| ST ()T + ng)T (2, + 25 + 15 — 3)

We may now bend the contour C; back to I' without hav-
ing to calculate the explicit residues at the poles z; = n;.
We can determine the convergence of the right hand side

of (34), with C, replaced by T', by straightforward analysis.

We commence with bounds for a (m,#n):

1\2
la(m,n)| < ml!mz!] (’;‘) fr, dt, frz dty

|— p313 — p3laty — pRtp 1"t

n-6 my+l (35)
(L4 ty + tyty)" Ol — D™, — 1

)mz*l’

where T'; and T', are the contours [t — 1| =7 > 1,
n > 4,and 7 is chosen small enough to have no zeros of

(— 1)"'2x2”3<4w)2‘2”3a<m,zl t24ng)
ny ny D(nf — 2, —2,)T1+nf —2, —z

COSTT(Zl + 22))\2(71’3-21—22)(4”)2-221—2zza(m’n:;)
2)F(Tlé - 3) 2972972}
(34)

I
E inside or on T'; X 'y, We may estimate the right-hand
side of (35) by

latm, n)| < mylmgl | F ()" 2"y M2,
where
f = sup |p3t3 + pjtaty + 3,1,
€Ty
e = inf |1+ by + t1b,5l, (36)
t;€T;

and from the earlier discussion we know that e > 0. We
let the final contour I'" close on the positive integers and
5; = 0. Then we see that the various terms on the right-
hand side of (34) are bounded, to within logarithmically
increasing terms, by

x E y-ml-m2~2
=

T'(m, + 1)T'(my + 1)

|
Zn -4
3 1 Lo =
(const) X 2 11 f(pé) -
nyrgny =l P )T +n) e " T(ny +ny, + ny)
x
TG+ my —
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The various terms in (34) can be reduced to those of (37)
by suitable substitution of the summation variables, such
as n§ =ny +n; +n,, ete. We note that the last summa-
tion on the right-hand side of (37), that over m, and m,,
is equal to

(— 12" [P (ny, — 1)D(ny + 5y — 3)]7"
x [@/dry" 2 r — 1))

x [@/ary et — 1)) = (r - 172
and so is finite if » > 1 for each value of n, and #,.
Thus

1M (p1pyps)]

2 Eni—él
< (const) ), g(pi) FI L
2 MO (Dn) 1T(n)T( +n))
X (r — 1)¥2% " (38)

This is evidently finite,and we can even read off the
high energy behavior of (38): If any subset of the
p? = + ©, then

If(p2)| < const max p?
1
so that

. , _,2y/3
IM((‘)j)(P]_Pz Pg)t < const econst (max; p7) , (39)

which is precisely the high energy behavior for the case
N = 2. There is thus no change of the degree of localiz-
ability on going from N = 2to N = 3,

If we try to extend this approach to the case N = 4, we
find that the problem of convergence of the summation
over m becomes extremely difficult. Thus in this case

E=[lL+ty+itgly +igtyby +ttaly + 1ttt
tolglglaly +tgtytaty + 1403, + t4t5tyhy
+bglatftaty ¥ bt 13628, + 1133t ,1,

+igtitdtat tot3dedt, + t5tft3edty). (40)

It is a very hard problem to prove that E is not zero in-
side the polydisk A, of the previous section for suitable
'r} > 1. This problem appears to have been very little
considered in the mathematical literature, unlike the
case of the zeros of monomials, The problem is compli-
cated by the fact that the graphs being considered are
the complete graphs, in the language of graph theory.
These are the most nonplanar graphs of any order which
can be written down, and little is known of their algebraic
analysis. In order to develop a useful convergence
scheme we use a different class of functions {¢, | for
our expansion in the next section.

4. FINITENESS FOR HIGHER N

There is one obvious choice for the class of expansion
functions {¢,,},and that is the Legendre polynomials.
For the function E will be nonzero in a suitably small
ellipse around the interval (0, 1) in each of the ¢;,and so
we take
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¢ (t) = P (2t —1).
Then in (27)
L7l 2n, + 1
i (59 L,
X (2t, — 1)E2(E,/E_ + ie)1 2(N-D) (41)

We can put a useful bound on a(m, y) as follows. For a
function f on the interval (— 1, + 1) which is differenti-
able to 1st order, we can obtain

+1 1 +1 ; , H
l f-x Pn(t)f(f)d'fl =@ni D ’ f_l atf(t)(P.q "—Pn-l)l

1 +1
:m ’ f—l dtf,(PrHI"’Pn—l)l
$(“27e%_1—>“7li“”f"” (42)

where Il F |2 = f_;l Ifi{2dtand IIP,| < 1/¥n. Repeating

the steps leading to (42) a total of » times gives the
bound

@n + 1)} f_;l P”fdz] < 1 fOUTn —»)/T(n)  (r<n).
(43)

Extending this to (L — 1) variables, we have the bound

-1 -
g fm, )] < 1 T
=1 T(m,)

x | pr[E-2(F./E, + i 2N -UI (y, < omy),  (44)
where now the norm on the right hand side of (44) is the
natural extension of the L, norm from functions of one
to (L — 1) variables. We may bound this norm by means
of Cauchy's multipie integral formula:

Dr'E;2(§1+ (L4 b,y +-e0)

L

)y—Z(N«l)

~th 7! du {E2[F_/E_ + ie]r2(¥-n}

Clt, —u) 't ’

- 1=1 27§ (45)

where C is chosen as the small ellipse round (0, 1) in-
side and on which E, is nonzero; C may evidently be
chosen to be independent of 7. If the distance of this
ellipse from (0, 1) is d, while upper and lower bounds of
E,and E_on C are ¢ and f(p,p;), respectively, again
chosen as independent of 7, then (45) allows us to deduce
for y > 2N that

i Dr [EiN -y (— F:r )y ~2(N-1) ] i

< uf

-1
n

1=1

r1d it

y-2(N-1) 2N~y
e z

s

where p is a suitable constant independent of r. Thus in
{44), for v, < m,,

-1 p(m, __7,1)1-'(,-1) fr2
lasm, )l < uzgl T(m)a"" " e’ 2N 46
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It is this inequality which will allow convergence to be
proved for M{¥) when the contours C, are distorted to
the positive real axis and the regularizing parameter &
is set equal to zero. To show this, let us first evaluate
the functions ¢, () of (28):

1
U ly) = [ dttrp, (2l —1).

A 2% (gm2 2% cosmz,

74

This can be evaluated by integration by parts, using
Rodrigues' formula, for Rey > m, and then continued to
the complete y plane, to give

¥, ('y) = I'(m— 'y)/sinﬂ'y [1"(—- 'y)]zr'(Z + M+ ) (47)

withpolesaty =~ 1, —2,..., — m — 1,as expected. In-
serting (47) into (23), we have

a.{(m, E]I: Zl)

) L-1f;
S;,N)(Pl by =T zl}l (‘5 f dz,

X 11

sin[(1 + &)1z, )T (z )T(1 + 2,

-1 Tim, + 2+ 2" z,— 2N, + 20)

X
)) weEPL ? sin(n Ef zi)T(Z{‘ 2, —2N +3)

1=1 sin7? Z{(Z) zzlr(l + mﬂ-(z) + ZNW(“ _El

We now have to close the contours C; in (48), and then
let 5 » 0. We can repeat this again, step by step, where

now we have to deal with an expression of the form, drop-

ping the convergence factor for simplicity

Ry g S
1

(o} . . (49)
121 " gingz, \I=1 sinm 25, z,./ sinm 23; 2,

where f(z; -+ 2;) has no poles in the right half-planes
of its variables. Let us introduce the substitution opera-
tor S(#, z), which acts on a function of z to substitute the
value n: S(n,z)f(z) = f{n). The effect of distortion of
the z; contour C; to the positive real axis is achieved by
removing the factor {sinnz,) sin(7 Ef z,)]"1 in the inte-
grand of (48) neglecting the various permutations 7,and
replacing it by the factor

L-1 -1 L-1
(smz z,) (z S(ny,2)— % s(n;, -5 z,,zL».
1 ny ny 1

Closing the z ; .4 contour round the positive real axis re-
places the factor

-1 \2]-1
[sin*rrz L_l(smﬂ Z;) zz)

in the new integrand by the factor

[(simr LZ;:? z ,)_2

-2 \-1 L2 3
+ (sinrr 4:_‘, 21) 2 S(n’L_l-— 2 zl,zL_l) 7 zL‘l] .

"},—1

T S,z (= D"

LTI

The same step applied to z; _, replaces the factors
[sin7z _, (sinm 2,15—2 z,)]™? in the new integrand by the
factor

-

(48)

(1) n(1)

20— a(INT{L + 25, 2,1 — 2N () + 27(1))

2 S{npp,2;5)(— 112

L-3 -y
(simr > 31)
%1-2

1-3 -1 L-3 ar-]_
+ [sinw 25 z,] 20 S{ni,— 20 z,2,5)—
1 "i-g

r-11°
8zY:

There will be a total of 21 such terms, the typical one
involving a product of various S(n;,2}) and various

S(n; =23° -1 z,,%;)91/0z} substitution operators. The net
result of these substitution operators is to produce a set
of (L — 1)-fold series whose typical term is bounded,
again to within unimportant terms, and again neglecting
similar contributions from the various permutations 7,

by

1 1 Fpip) "
- 387
consty x 21 (m T(n)T(1 + ”i)) T(2im)

X3 B Tm, + X' n,)0m, — 7))

. 5
S 11 TOm, — 5 n, T nl.)]zl‘(mi)d"ld (50)

For eachny ++- n,_;,in (50) we choose », = 2 ;' n,, + 2,
so that, for very large m,,

!
T(m, + o n,)T(m, — 2>}t n,, —2) - (const)222 e

= ’

T(m, — 25" n,)T(m,) m?

(51)
where the constant is independent of m; and in e
Then the summation over m will certainly be convergent,
for eachn.

We note that we can only use the bound (46) provided 7,
is chosen less than m,. Thus the summation over each
m, has actually to be split into two parts, one for values
greater than 2 Z}'nzf and the other for values less than
that. We bound this latter contribution by the choice

¥; = 1,and s0 we have in detail

S
m =1

r(mz - Z;l ”, ')F(mz)d

Zzlnz,

-1 [I‘(ml + T, ) Tm,— 25 ny, — @ T ny, + 2)e(m, —2 5 ny. —2)

t
rlm, + 2 n,, ! ! L ! .
+—-———-———————(m’ Z l) G(Zan+2-—-ml>9(ml—-znz')r(mz+Z”z')r(znz""mz+1)9(2“z'+1‘mz>]s
7

F(mz ’Zl”z')
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where 6(n) =1 forn=0, 6@m)=0 forn<O.

Since, for all n,

2mnni/2en < D(n + 1)< 2V 2mr+1/2en
then

i} Fm+n)'e—m + 1)<[T{@)]2 -
m=0

22232 (cons),

2n+2 (53)
_I_‘Ln__i_ln_)< (const) [I'(2)]2(9e2)n

m=n+1l F( n)

for all m and n, where the constants are independent of
m and n, the contributions from these finite ranges of

m, will also be convergent, and give the same behavior
for large n as that arising from (50) and (51). By putting
together (50), (51), (52), and (53), the summation over =
will be bounded, to unimportant factors, by

b <Lf11 rein,) ) Fp)™
mtmpy \i=1 Tey)T(1 + nl)[F(Z)l "z’) P r "J') dEn)
(54)

which is certainly finite, Again we may read off the
behavior of (54) for some subset of the (p, p) becoming
large; its value is

(Fipp)y

e [maxi,
n3m

p)]V/3
58:2))

2 (55)

if 7 of the integers #; are summed to infinity in (51), the
remaining (L — 1 — 1') being held finite.

We now have to prove the existence of the limit as

€ — 0 of the quantity Sy, (¥)p,+--p,) obtained by the pre-
vious discussion. In the process we will justify the use
of the inequality y > 2N in the discussion after Eq.(45).
To obtain a limit as € — 0, it is evident that we must
separate Sy ‘¥Xp ;. p,) into two contributions, one in-
volving contributions from poles in the variables z, for
which y =73§z, < 2(N— 1) and the other with Z}Lzl

2(N — 1), The proof of the convergence of the Legendre
polynomial expansion breaks down for the first of these
contributions, since for it the right-hand side of (14)
becomes infinite as € — 0, at least for certain timelike
values of the external momenta. The previous discus-
sion certainly applies, even at € = 0, in the Euclidean
region of external momenta. However, in order to obtain
the physical amplitudes directly, without continuation
from the Euclidean region, it is necessary to perform
the above~mentioned separation explicitly. This we do as
follows.

We firstly perform a suitable number of integrations by
parts with respect to the ¢,-variables in (24). If there
are m, integrations by parts for ¢, then the factor

Jjdt,t]@) in (24) will be replaced by

[g;___l__

§5(r-1 )(tl —1)
re1s=1 (y, ()t 8)

(— 1)™ae)n™ (.i)"“] . (56)
: at,

We take m, = — 2(N! — 1) + 2NL, where N is the number
of vertices contained in the first [ lines. Then the last

I —-
s=1lyn) t8)
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term in this new factor (56) will have poles in 2 i)z |
which have not been made explicit, in other words are
not in the factor [17[y () + s]%,at Dz, > 2LN.

We may thus rewrite (24) as a sum of terms, arising when
the expression (56) is substituted for Ldt t)t in (24), the
characteristic one being (dropping the permutation #

L .
i
(AN [7 fcldzzfa (zl]

liNﬂ

sin(nlezl)I‘(Z}{‘zl — 2N + 3)

’ il
APl L gory B3
1=1"  ‘ts=1 by, +s) 1=Lr+1  s=1 (y, + 8)
f dt, 17”2“'2(“ 1)< ] >21.N-2(Nl-1)
0 ot
(f_,: + Z€> 52;-2(N~ l)E -2 (57)
where
File) = A22(47)2-2 2 cosmz
sl2) =

sin[(1 + 8)nz[T'(2)T'(1 + 2)

We may now shift the contours C, for each z, variable
to the right by an amount (2N — 1), to the contour which
we denote by C, 5; this contour will be parallel to the
imaginary axis and have real part between 2N — 1 and
2N. Following the discussions already given in this and
the preceding sections, the resulting contribution will

be a sum of terms, each one involving some of the z,'s
being integrated over. In all these cases the summation
is only over a finite set of integers, and the new com-
ponents of the variables {; will all be greater than minus
one. Furthermore, in each of those terms with at least
one z, variable integrated over C, , the exponent of
(F/E + i¢) in (57) will be greater than zero, so that the
preceding method of expansion in Legendre polynomials
in the remaining variables ¢ ; can be applied, even for

€ = 0, thus allowing the value of the regularizing para-
meter to be taken to zero. The only singular term will
be that arising when there are no variables z, integrated
along C, . But then this contribution is regular in 0 as
6 — 0, as can be seen by inspection, and for 6 = 0 will be
a sum of a finite number of terms, each one involving

an integration over a subset of the variables (¢;. .
of a finite derivative of a finite inverse power of
(F/E + ie), multiplied by E-2, and possibly multiplied by
a finite power of log(F/E + i€) (from residues at multi-
ple poles in the z-variables). But the arguments of
Hepp3 then apply to this case, provided they are extend-
ed to include the distributions [log(x + i0)J7(x + {0} ~.
Since these products can always be written as finite
sums of well-defined distributions3 this extension is
immediate.

Thus the existence of the boundary value of S, (¥
(py*++p,) as an element of a suitable space of general-
ized functlons has been proved. The estimate (55) is
valid for the contribution arising from those terms of
(57) which have at least one 2, variable integrated over
Co y» and so this space must contain at least functions
with the corresponding high energy increase in each of
the invariants. There are only a finite number of terms
on the remainder, each being a distribution in the space
DL(RE (N-1), Thus the sum of all of these contributions
will be an element of the generalized function space

S, in each of the components of the momenta, with

a<i

i)
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5. UNITARITY

We prove unitarity using the notation of Bogoliubov and
Shirkov.® This is discussed in terms of the S-matrix
functional

S[f] ZZN)GNISN(xl. ¢ 'xN)f(xl)' * 'f(xN)dxl‘ . 'de

and the unitarity condition for the operators S, then
reads

N
k};%)p(k | N— k)S,St.,=0, (58)

where P(k| N — k) is the operation of summing over all
possible divisions of the vertices X;, ..., X, into two
subsets with # and (N — k) members, respectively. By
using that

N
Sylxqeexpy) = ;iI;Ilexﬂbi:sgN)(xl. s xy)

where S, is given by (11) as

(M- - xp) = ¥ TT e 2is| Co
S (Mxy-exp) = N ILe™ 247} (59)

the unitarity condition (58) becomes

N-k
LPRIN — k)Sh(x -+ 2, )S8-**(x, 1+ xp)
k=0

2 (-) N .
% ilgk e)\A” :il;lleMD(x,):O, (60)
FEN-Ek

where I1,_, .y, denotes the product over all choices of
the index ; faken from the set (1,2,...,k) and the index
j from the set ((¢ + 1),k + 2,...,N).

Hence a sufficient condition for unitarity is
N
S P(k|N— RSNy« + + x)SENR*(x, 1+ xp)
k=0

)
x eM8i7 =0, (61)
ick,jEN-b
In order to prove (61), we will first prove a modified
form of unitarity for the regularized generalized func-
tions S{¥ Xx, -+ - x,) for 6> §. To obtain this, we will

cons(ider a regularized version, denoted by)
| C 2,

¢®571 % of the generalized function e* >, This will

be defined, by analogy with (8), to have the Fourier trans-
form

)@A(-)!CO —if dZ(A2)2(4ﬂ')2'2z(p%)z‘ze‘i"z
8 7 2 /Citan(nz) 6m[(1 + 8)nz]T(z — 1)T'(2)T'(z + 1)
484
(2m)%6 (p),’ 62)
(1 +8)

where p2, the function defined by
p2=p2 (Horp2> 0,p,> 0)
=0 (otherwise),
This is again finite if 6 > 3.
Since for all 2z

[ARx)]2 = 8lxp)[A WAx)]2 + 6(— x)[aPNx)]%,
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then

e?5% = g(xy)e¥a ™

o+ 6(— Xg)e ’FA(')ig". (63)
Hence the “cutting formula” of Veltman? will apply to
graphs built up with lines e*A]‘SCO, provided the sums

over intermediate states are given by e*® N go. In other
words the “regularized unitarity” condition

N
E%P(k [N — RIS {F iy -+ ) SENR (o, g )

C

TN,
x 11 Xaif 1% — o
i€k, jEN-k 8

(64)

will be valid. We may now extend this to 6 = 0, since in
momentum space the generalized function e ¥2 Yisa
multiplier of generalized functions of the invariant %2
which are smooth at 22 = 0 and are in the space S, for
@ < 3. Thus on the left-hand side of (64) we may first
distort all the contours C, back to the positive real axis,
in all three factors of the kth term, and then let 6 — 0,
with assurance that the left-hand side of (64) will re-
main finite. The resulting expression is then analytic
in §, for 6 along the real axis down to the value zero,

as may be seen by direct inspection of formulas similar
to (34) but now with 6 3 0. Hence the right-hand side of
(64) remains zero, and the unitarity condition (61) for
the physical amplitudes SfXx,: - - x,) has been proved.

6. CAUSALITY

With the same notation as the preceding section the
causality condition for the amplitudes S§V’ is®

N
ksz(k [N —RISEDxg, X1, 0oy %)SEN-F*(x, 1+ - 1)

O
x T e85 =0 (85)
ick+l
FEN-k

if at least one of x,---xy is spacelike or in the backward
light cone to %, where the operator P(k, N — k) only
divides the vertices (x,- -+ x,) into two subsets of # and
(N — k) elements and leaves the x; dependence always

in the first factor Sék"l). We may formulate a “regulariz-
ed causality” in the same fashion as the regularized
unitarity of the previous section. This will read

N
kZ’oP(k [N — RIS {F+Wxge « - 2)S -0y y 0 o)

©)
x I X85 |% =0, (66)

ick+l
FEN-k

Again (66) is valid for > 3 from Veltman's cutting for~
mula,” and again it can be continued down to 6 = 0, the
regularized quantities in the left-hand side having the
contours C; distorted back to the positive real axis and
then & being allowed to go to zero in the resulting ex-
pressions to give (65).

Of course, it is only possible to write (65) as a relation
between generalized functions provided that these have
test functions of compact support. That this is the case
for the exponential interaction was shown by (55), in
other words that

S8 (py-+-py) € SERAN-D) (67)
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for any o < . The corresponding space of coordinate
space test functions is then S{R4(¥-1)), which is known
to have a dense set of functions with compact support
provided @ > 1. This we can certainly choose, so that
the causality condition (65) can be given a generalized
function formulation without the need for added com-
plications.

7. RELATION TO OTHER REGULARIZATION
SCHEMES

There have been various regularization schemes de-
veloped recently to discuss the superpropagator,N = 2.
All of these methods lead to the same parameter-free
result with the branch cut in A2, We wish to discuss how
the extension of these various schemes to the case of

N > 2 produces the same results as those obtained in
this paper.

We start by remarking that there is an ambiguity allow~
ed in our regularization through the introduction of the
parameter § which is,for N = 2,that arising by replac-
ing the factor (1 + z) ! by {I'(1 + 2)"1 + f(z) sinnz].
The function f(z) is to a certain extent arbitrary,though
assumed to be analytic and to have finite order of growth
less than or equal to unity. Evidently an identical sub-
stitution in the higher-~order terms S%N) can be perform-
ed and finite results obtained for the physical quantities

S(ON) under further suitable conditions on f provided the
modifications of all superpropagators are identical, and

a similar modification made in e)‘zA() 21, then unitarity
and causality will be satisfied by these physical quanti-
ties. In other words unitarity and causality in higher
orders gives no restriction on the ambiguity present in
the definition of the superpropagator.

Let us now turn to discuss in detail other regularization
schemes than that used in this paper. One of these, pro-
ceeding through a sequence of L, functions®, can be
shown, by a little manipulation,to be the same as the in-
troduction of the convergence factor exp[— (20" a;1)c]into
(16), where c is a positive constant. This evidently intro-
duces convergence of the o, integrals in (16) at a; = 0,
even if the z; have Rez, > 0. In order to be able to let

¢ — 0,1t appears necessary first to go through the pro-
cedure of performing the ¢, integrals and deforming the
C, contours to the positive real axis, as described in
Sec.4. However,the function exp{— ¢ 7% a;1] cannot be
expanded following the method of Sec. 4,though it ean by
method (ii) of See. 3. Since that approach has not been
completed, it is not clear that such a regularization will
succeed, or if it does that it will agree with the results

of Sec. 4.

Another approach to regularization of the superpropa-
gator has recently been proposed? along the lines of
analytic renormalization.4 This consists in replacing
the usual Feynman propagator A by A1-¢ and keeping ¢
in a suitable region in order to perform the necessary
manipulations without catastrophes. If this is done in
the Nth-order term S(¥), we obtain

S (pl...pN);_ﬂeiuNlI‘:[l fr%

dzlhgll(4ﬂ)2"221
X
tan(nz,)T(1 + z,)I((1 —€)z,)
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« 1
sinn[2N ~ 3 — (1 — )5 %2, ]T[3 — 2N + 2)7z,(1 — €)]

-1 ©)
( n s} dtlt[‘w))
=1

— F")—Z(N—1)+(1-E)£Lzl

< %

TEPy

68
() 2Vt (68)

where yl@)_—. 2(1 ——Nl) —1 —Z)lzl,(l —€)and I is a con-
tour encircling the positive real axis counter clockwise.
The poles of the integrand of (67) at z, =n,/(1 — €)

pinch the contours I' at the poles z; =n; as € — 0 with
Ime > 0. If these former pole contributions are dropped
on expansion of the contours I'and then € —» 0, precisely
the residues in the z; variable at the nonnegative inte-
gers will have to be calculated. They are precisely
those calculated in Secs. 3 and 4,though without the need
to justify the rejection of the residues at #,(1 — €)™1. In
any case the analytic renormalization approach is seen
to lead to precisely the same results as the method used
in this paper. Another approach to renormalization has
been given by Lehman and Pohlmeyer.10 It is to be ex~
pected that this regularization scheme produces the same
finite amplitudes as the one of this paper;we hope to dis~
cuss this elsewhere.

8. MORE GENERAL INTERACTIONS

Let us consider the class of interaction Lagrangians for
massless particles:

Line = J, U :etordr,

The rules for writing down the Nth-order contribution
in L, . to S-matrix elements have been given elsewhere.?
Each of the N vertices acquires a factor l(tj)t7"i if there
are external particles at the jth vertex, while for the
line joining vertices i and j the constant A2 is replaced
by ¢;¢;. Finally the n variables ¢; are integrated over.
This is equivalent to introducing a factor a(m; + Elejz )
for the jth vertex into the Eq.(12), where 2,¢; is summa-
tion over thé lines ! which meet at this vertex, and

aln) = f: tn1(¢)dt.

We assume that a(n) has an analytic continuation into
the n plane and is of exponential growth of order ;o at
infinity; the superpropagator is localizable for o < 1 and
definitely nonlocalizable if @ > 1. The z, integrations
along C; are then convergent in (24) provided that 6 >

(3 — @). We see that only in the nonlocalizable case o >
3 will these integrals converge without regularization.
Since that situation has the difficulty that the resulting
series for the superpropagator has zero radius of conver-
gence in A(x) in coordinate space, and its definition is
fraught with perils,11 we will not discuss this in any
detail here. We can certainly determine the resulting
high energy behavior, following along the argument

given at the end of Sec. 4,to be

exp[(nila];x |psp; 1)1/ Ge),

Such behavior agrees precisely with that for the super-
propagator, N + 2, and is evidently nonlocalizable if @ > 1.
It is also evident that the proofs of unitarity and causa-
lity given in Secs. 7 and 8 go through exactly as for the
pure exponential interaction,though evidently breaking
down at causality for the nonlocalizable case of @ > 1.
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9. DISCUSSION

We have discussed a prescription for obtaining finite,
unitary and causal amplitudes to each order in the major
coupling constant G for a class of nonderivative non-
polynomial Langrangians for massless fields. There are
numerous questions which now need to be solved:

(1) Are all other properties of physical interest, parti-
cularly that of positive metric, satisfied by the prescrip-
tion for localizable theories?

(2) Is it possible to sum over the major coupling con-
stant so that on-mass-shell S-matrix elements are poly-
nomially bounded, at least for localizable interactions,
as has been shown to be necessary?12

(3) Can this approach be extended to massive particles,
for example, along the lines suggested by Karowski?13

(4) Can derivative interactions be included, at least in
the quadratic case of chiral couplings and general rela-~
tivity?

We hope to give answers to these questions elsewhere.
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Method of calculating quasiaverages
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Some features of quasiaverages for model systems with four-fermion interaction are considered. A new method
of defining quasiaverages for the systems under consideration is proposed.

Up to the present time, the class of exactly soluble dyna-
mical model systems has consisted mainly of one- and
two-dimensional systems.!.2 In this paper we shall con-
centrate on the treatment of certain three-dimensional
model systems which can be solved exactly.

In a number of works3:4 we have dealt with so-called
model problems of statistical physics, which allow
asymptotically exact solution (for V — w, where V is the
volume of the system). Our investigations have yielded
asymptotically exact expressions not only for the free
energy, but also for the Green's functions and many-
time correlation functions. It is worthwhile to mention
that the investigations have been carried out with mathe-
matical rigor, and a special majorization technique has
been devised to establish the fact of asymptotic accuracy.

While investigating the Green's functions and many-time
correlation functions, we had to make use of the notion of
quasiaverages and to introduce into the Hamiltonian un-
der review the so-called source terms, which tended to
zero after the limiting transition V — « was performed.

Now we explain the above procedure by considering one
of the simplest examples of model systems studied by
us, namely, the system characterized by the BCS Hamil-
tonian

H=T—-V(L*L)/2

T=73, Tala,, (1)
& rerts

L=(1/MTr;a_sa,.

Here af,a} are the Fermi operators, V is the volume of
the system, f = (p, ), the union of momentum p and spin
o, the momentum p takes the usual quasidiscrete values,
and T; = p?/2m — p, | being the chemical potential.
Some’ general conditions are imposed on A ,, which must
vanish fast enough when |p| — «. If one sets up the fol-
lowing equation of motion for the Hamiltonian,

da

i =

7 va; —al; L', (2)

then by the definition of L it is clear that the operators
L, LY commute with our operators a,,a; with an accu-
racy up to the values of the order 1/V. Therefore it
would seem natural to assume that the operator L is al-
most a C-number. But then

<L>H = C’

where the usual average of Hamiltonian H is denoted by
< e >H s

(ee+)y =Sp(-- e4/0)/Spe-#/8,

As the Hamiltonian H is invariant under the gradient
transformations

a;~ ei¢af, ¢ = const,
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it is easy to see that all
(a_jap)y =0,

and, consequently,
(L)y = 0.

Thus it turns out that the operator L itself can not even
“approximately” be regarded as a C-number. In order
to avoid this difficulty, we made use of the notion of a
quasiaverage and introduced source terms into the
Hamiltonian. Instead of H we considered the Hamilto-
nian
T=H-—-¢V(L+LY), ¢>0. (3)
We defined the quasiaverages over H as the usual
averages over the Hamiltonian T, in which { — 0 occurs
after the limiting transition V — «. As a result we
could produce a rigorous proof that for any { > 0
{(L—C)(L*—C) >0, forV— o,
where C is some positive value. Together with exact
equations of motion (2) we made use of the “approximate
equations” of motion

da
. S _ .
ke Tra, —af,C:xy, (4)

which, by the way, correspond to a Hamiltonian

H(C)=T—+V(CLt + CL — C?), (5)
which we call the “approximative’” Hamiltonian. Using

a specially devised majorization technique, we could
prove that the correlation functions for a product of the
Fermi operators constructed from (3) are asymptoti-
cally close to the correlation functions constructed from
the Hamiltonian (5) in the sense of quasiaverages, i.e.,
the limiting transition V — o is followed by £ - 0. As a
result we obtained majorization estimates for the dif-
ference of the correlation functions constructed from
the Hamiltonians (1), (5).

The corresponding estimates of the approximation for
the correlation Green's functions at V — « were not
uniform with respect to £ — 0; therefore, the order of

the limiting transitions, namely, V - « followed by

¢ — 0, was quite important. This fact constrained the de-
finition of quasiaverages (5). The question arises, how-
ever, as to how one can define quasiaverages for the
given Hamiltonian, without introducing source terms
since, physically, the quasiaverages characterize the
system under review and the introduction of sources is,
in a sense an artificial trick violating the invariance pro-
perties of the system. As we see, such a program of de-
fining the quasiaverages is feasible, though the majori-
zation estimates become much more cumbersone. The

Copyright © 1973 by the American Institute of Physics 79
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point is that in this case we can not prove that the ex-
pression {(L — C)(L* — C))g is a small value, as this
average turns out to be far from being small; instead it
is larger than C2. Nonetheless, we manage to prove in a
rigorous way that the value

(L*L - C?)2)y =y =0, forV - o, (6)
is small and, besides, that
t
%%—'%%>HSVV—90, at v - w. (1)

We may understand the special importance of this proof
if we consider the Hamiltonian without sources, H [Eq.
(1)}, and introduce the auxiliary operator constructions

o =usa;+ val(L/C), ®
o =usal + v, (LY/Cla_y,

where
u;= 2121+ T,/E )J1/2,
v, =[ —e()/V2)(1 — T,/E )1/,
E; = (CA% + TP)V/2,

It may be mentioned that these operator constructions
(8) “satisfy only approximately” the commutation rela-
tions of the Fermi statistics when f = f’. If the operator
L were a C-number and L = C, then these constructions
would exactly coincide with the “new” Fermi operatorsS
associated with the “0ld” canonical ¥—~v transformation.

Writing down the equations of motion with respect to the
operator constructions (8), taking into account Egs. (2),
we can reduce them to the following form after perform-
ing cumbersome manipulations:

dof
z';ti +E,at=R,, )

where the “average”, i.e., (R} - R )y is just expressed in
terms of these two averages (6), (7).

Let us then take up the estimations for the averages (6),
(7). To prove inequality (6), we apply the theorem of
proximity of free energies.4 At one time this theorem
was proved for the BCS Hamiltonian. However, it be~
came apparent afterwards that the results of this theo-
rem were of a more general nature, and this made it pos-
sible to apply the theorem for the asymptotically exact

V — o calculations of the simplest binary correlation
averages. Further, this theorem was generalized to a
broader class of the model systems, its range of applica-
bility extending considerably. We shall show that the re-
sults of this theorem are sufficiently strong to provide
for the proof of the above-mentioned inequalities (6), (7).

Now we state Theorem 1.

Theorem 1: Let the operators T, L, L* in the Hamil-
tonian H satisfy conditions

Ix;] = @ = const I
(/W) In, - T?] = @, = const ’
(§D]

where @ and @y are constants as V — «, and let the free
energy calculated per unit volume for the Hamiltonian
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T =Z,T;a%a be restricted by a constant
|(6/V)In Spe-T/8| = M, = const.

The approximative Hamiltonian for system (1) is (5).
The the following inequalities are valid:

0 < abs r&l)n Feo)HC) — fy(H) = €(1/V),
and here the value ¢’(1/V) -> 0 uniformly with respect to
6 in the interval 0 < ¢ = 6,, where 6, is an arbitrary
temperature, and

FeafH(C) =4C? — 3 (2m)3[E,~ T, — 20In(1 + ¢ 7®]a1.

In order to apply this theorem for the proof of inequali-
ties (6), (7), we give reason as follows. Consider the sys-
tems which are defined by the Hamiltonian dependent
linearly on some parameter 7:

H,=Ty+ 1T,. (10)
We define formally the expression
fy(H,) =—(6/V) In Spe ¥ 7/°

which we call a free energy per unit volume V for the
model system H..

One can prove the validity of the inequality

&) =0,
dr?
Denoting
d 1 Sprye*® (v,
Efvw?) Ty Spe ¥7/° v

We arrive at inequalities that hold for any operators Ty,
Iy

(1/VIT D r, = fy(To + Ty) = fy(To)= (1/VXTyp, )

To estimate (6), we set
H=To+ Ty, T;=pG=pV(L'L—C??2
Fog=H—Ty,

where p is a fixed positive number. From (11) we get
(0/VG)y = fy(H) — fy(H — pG),

and, consequently,

(LTL—C2)By = U/p) fylH) —fyllH — VP(LTL — cz()lzg

It remains now to apply the above-stated theorem for the
right-hand side of (12) and to show that these free ener-
gies coincide at the limit V — . We introduce the fol-
lowing “abbreviation.” When we say that the system with
the Hamiltonian

H ={H — Vp(L*L — C?)2}
is approximated by the system

H(S) = {H — Vp(2S[LTL — C?] — 52}}, (13)
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we understand this to mean that the corresponding free
energies constructed on their basis are close in the
sense of Theorem 1.

Keeping in mind that
H=T— $VL'L,

we write (13) as
{T — v(2Sp + H)LTL + (52 + 25C2)Vp}. (14)

Using Theorem 1, we see that (14) is approximated by a
form quadratic in the Fermi operators

—28p)(C'LY + &L — Cre)
+ Vp(S? + 25C2)}.

H(S, ¢ ={T —Vv(}
(15)

We recall that the system (13) is approximated by the
form (5). We remark that, in (5), C is a complex number
in the general case, but it can be shown that the absolute
minimum of the function AH(C)) is realized with a real
C. Therefore, C can be regarded as real in the case of
the approximative Hamiltonian H(C). Comparing the
“approximative forms” of Hamiltonian (15) and (5), we
see that in order for the right-hand side inequality (12)
to be of the order n(1/V) — 0 at V — «, one has to choose
the solution
C’'=C and S=0.
Now it is easy to verify that such a solution really exists
and, besides, one can find p = py > 0, such that there
exists an unique solution of the problem as absolute mini-
mum of the free energy constructed from the form (15).
In other words, proceeding from this theorem, we find that

(L*L — €2, = (1/p)e(1/V) ~ 0,

Inequality (7) is proved in a similar way. As a result of
this reasoning we arrive at the estimation

for V> . (16a)

(RYR )y = &(1/),

where €(1/V) = 0 for V - .

(16b)

Proceeding from the equations of motion (9) and taking
into account the estimation (16a), we can follow reason-
ing similar to that in Ref. 6, obtaining a corresponding
estimation of the difference of the correlation functions
constructed from Hamiltonian (1) and the corresponding
approximative Hamiltonian (5).

We now turn to an important lemma.

Lemma 1: Let the equations of motion for the opera-
tors a,, where |a,| < b, = const, have the form

da

da
where

(RIR;+ R RY)y =< 2¢,~0

=E;a;+ Ry,

for V-0,

and let B be a bounded operator {B| < b, = const. Now
we set up the difference

D=(atB)y — e EL/VKB - al)y.

Then the following estimate holds:
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D] = (2/9)[)2(3,,,)1/2,

Proof: Using the spectral representation for two-
time averages,?-8 we write averages for O:

CHOLIC PN W
(B(1) -
If we put ¢ = 7, then D takes the form

D= [5J

Notice that

Sw)eietdo,
() f J 4 g(wewfetvt-Ndy,

5 (W)(1 — elw-E(SN/6)dy, (1-4)

11— elw-E(/N/0] <[l _.E(f)l/g](l + guw/e),
we have the estimation
= (/0 [,

|| C19 4 @ o = BN+ ew/o)dw,

and consequently

91 = /0([Z7, (@ = BN + evrodo)ir

( oo I gt @)1+ ew/e)dw>1/2 (2-4)
From the lemma’s conditions we have [B| =< b,, imply-
ing

(B'B + BB*), =< 2b3%
and o
(B'B + BB"), = fw JB,,B(w)(l + ew/8)dw < 2b% .,

(3-4)
On the other hand, we know that
(o d 1 (@w — E(NR( + ew/0)do
= (RfRf + R RT)H (4-A)

Applying the lemma's condition, we have
(R]?Rf + R,R})H = 2€y,
and, substituting (3-A), (4-A) into (2-A), we find finally

IDI =< (2/6)b,(2,)1/2,
which completes the proof of Lemma 1.

Consider now an example of the calculation of the aver-
age

(ata ). (17)
We mention that, among the averages constructed from
Hamiltonian (1) and composed of the product of Fermi
operators, only those averages which contain an equal
number of creation and annihilation operators are dif-
ferent from zero.

We write down the operators a%, a, expressed in terms
of ay, a%

- Ujaff(L/C) + ﬁf,

= T = 1‘
ap=uza; at =u,a}

—v ALY/ C)a; + G}, (18)
v3(1 — L*L/C?)a

= /v , A= 9
(1/ )(Z;)Afa_faf 7 (19)
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Substituting (18}, (19) into (17), we find

(afagly = (ujohoy —u v 0) ol (L/C) —uyof

—u ;v LY/ C)a s, + v3(L/C)a faf‘ff(L/C)

(20)
To estimate the terms on the right of (20), we take ac-
count of (16). Denoting (LL'/C2 — 1) = y and taking into
account the estimate (16), we see that

(y2)y = nv(,1> -0 for V- . (21)

We note that the terms in (20) which involve the opera-
tors 7, fi;, can be estimated by the inequality?

K, whgl = LA, 45 (Wt -wii/2

and, further, by the estimate (21). Using the asymptotic
commutativity, we can commute the operator n in the
terms where it is sandwiched between operators L oay
and then estimate it following the above-mentioned pro-
cedure.

In all cases we construct estimates for these terms,
which are majorized by the value ¢} — 0 for V — 0.

For estimation of the following averages it is conve-
nient to find, with the help of Lemma 1,

(atat, L/Cyy, (LY COajapy, (atapy,

<(¥,—Q})H

Now we may estimate the averages (oz* a*fL/C) g It
should be noticed that the operators Olf af “satisfy only
approximately” the commutation relation of the Fermi
statistics when f = f’. We get

lot ot + at ol | = const/V, lapa;+ aapl
= const/V.

Let us use Lemma 1 and put B = aff L/C; then we get
the estimate

Kot of (L/C)y — ot a4(L/C)) e BCS V6]
= (2/0)b,(8)1/2 + K, /Y,

K, = const,
whence

Kah ol L/C)gl = (2/0)b2(8 )12 + Kp/V.

In a similar way we get
Ka_f af L?/C>H! =

Applying these estimates, we see that the first and fifth
terms give the main contribution here, i.e.,

(2/6)b,(2 )12 + K,/ V.

uXafagy + VH(LY/Cla s, L/C)y.

The second term can be transformed by permuting the
operators LY with a_,, of and further with the help of
(21). Approximately speaking, it can be represented in
form
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V¥ a ;at)y + {“small terms” when V — w},
Taking into consideration the identity

afa,+ a,0f —1=0v3(LLY/C?) —1]+ G/V,

where G is a bounded operator (|G| < const,as V — «),
and Lemma 1 (B = ozf) we find the estimation for the
average (afa)y.

At the end of this sequence of steps, we get

Kaja), —[(1+ e®/°)h + v2thE /26]| < £2,

where the expression ggz) - 0as V- o,
Hence

lim (afa)y = (1 + ") + v3thE /20,

Note also that averages involving only the combinations
of Fermi operators such as

a_sa;,...,alal, (22)

and constructed from the Hamiltonian H(1) are equal to
zero following the selection rules, e.g.,

(a_faf>H =0

Therefore, while defining the “quasiaverages” from such
products of Fermi operators over the Hamiltonian H,
one should complete the operators such as

L/c, Lt/c. (23)

The point is that if we multiply an operator of type (22)
by an appropriate operator of type (23), the resulting pro-
duct is gauge invariant,

We illustrate this by considering the calculation of the
quasiaverage

{a_aL?/C)y (24)
Substituting (18) into (24), we obtain

{a_;a,L'/C)y = (uda ;a,LY/C —usv 0 ;a%LLY/C?
+usa  LYC+ usv,af(L/C)ayLt/C
~v23af(L/C)a’, LLY/C? + v, af (L/C)F,L'/C
+ 77 jufosz*/C - 7) fvfoz LL?/CZ + T] f"7+fL /C>H

Applying the estimates of the preceding example, we see

that the second and fourth terms give the main contribu-
tion here, i.e.,

-*ufvf(a_faj}LL*/C’g), uf”f(“}(L/C)afLT/C>H-
As a result we find

Ka.,a,L'/C)y —upv (1 — =/ + e = £,

where the expression 5%,1) = 0as V- cw.

Hence the quasiaverage over the Hamiltonian H is de~
fined by

a_ra = lim {a_,a,L'/C
(-f f),q (V-»OO)< ~-f%F // >g

=u v 1 — 570/ + FrP).
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Using this procedure, one can calculate not only binary
averages, but also averages of more complicated opera-
tors.

Thus we see that it is possible to calculate quasiaverages
for the Hamiltonian H, without completing the Hamilton-
ian H with source terms. But here the majorization
technique becomes complicated. This circumstance is
evinced by the fact that in the given case only the opera-
tor LL" turns out to be “approximately” a C-number
when V — o, but not the operator L. The proposed treat-
ment can also be generalized to more complicated cases
of model systems.
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We consider the propagation of a Gaussian beam in a strongly focusing medium with random deviations
from uniformity. We compute the intensity and intensity fluctuations on the beam axis and the mean
power of the fundamental mode when the random inhomogeneities are weak and the distance between
source and observation point is large. We also compute the mean power transferred to each higher

mode.

1. INTRODUCTION

Several investigators?:2 have considered Gaussian
beams in homogeneous or inhomogeneous deterministic
media. We consider here a stochastic Gaussian beam
modeled so that the following conditions hold:

(i) The beam propagates in a strongly focusing axisym-
metric medium with random deviations from axial uni~
formity.

(ii) The random inhomogeneities are weak and the
source is far from the observation point.

Our analysis is based on an explicit representation of
the field of the beam in terms of a stochastic process
which satisfies a stochastic differential equation. We
analyze this stochastic process in the limit of weak in-
homogeneities and long distances between source and
observation point by using the method one of us3 em-
ployed previously to study wave propagation in a slab of
random medium,

In Sec. 2 we formulate the problem. In Sec.3 we analyze
the above mentioned stochastic differential equation.
Sections 4, 5, 6, and 7 contain the main results which are
as follows. The expected value of the beam intensity on
its axis remains constant even at large distances from
the source, but the fluctuations grow exponentially with
distance from the source. The expected value of the
power in the fundamental mode, normalized to 1 at the
source, decays with distance from the source. Finally
we give a general formula for the average power trans-
fered to each higher mode.

The above results can be generalized to nonaxisymmet-~
ric (nonorthogonall) beams by using certain group theo-
retical methods4 developed by Burridge and Papanico-
laouS for a random slab problem. We shall present these
results elsewhere.

The related problem of a Gaussian beam propagating
through a system of lenses with random imperfections
has been treated by Steier®, using the methods of geo-
metrical optics.

2. FORMULATION OF THE PROBLEM

Let efvt ¥(x,7,Z) be a time harmonic complex-valued
scalar field satisfying the reduced wave equation

i =v—1

H

(2.1)
where x,¥,z are Cartesian coordinates, 9, , 35, 3; denote
partial derivatives, # is the free space wavenumber, and

n is the index of refraction.

32W +32¥ +0F¥ + k2n2(x,y,2)¥ =0,

We shall suppose that, for each x, #2 attains a maximum
value of approximately unity on the x axis and we shall
restrict attention to wave propagation with large % in
the x direction and confined to the neighborhood of the
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x axis. Under these conditions it is useful to make the
so-called parabolic approximation in solving (2.1).

This approximation may be obtained as follows: Write
y =kV2y, z=kY2Z, ¥&,,2)=e*Yh,y,2).

2
Inserting (2. 2) into (2.1) yields

— 203 + B 102y + (82 + 32)¥ + k[n2(x,k 12y,

EFV2z)- 11 =0. (2.3)
When % is large, we may neglect the term #°192¢ and
consider the initial value problem (with suitable initial
condition):

— 23 + 2P + 32y + k(nZ2— 1)Y =0,
V(0,y,2) =¥y(v,2)

This is the parabolic approximation. It is also called
the forward scattering approximation. Note that (2. 4)
also governs wave propagation in the negative x direc-
tion provided that we multiply ¥ by e *w? instead of
etvt, We shall use this fact in Sec. 4.

Let us now make some further assumptions about 72,
but first let us expand #2 as a Taylor series iny,Zz up
to quadratic terms:

x>0,

(given). (2.4)

n(,5,2) = alw) — [by;(®X)F2 + 2 ,(x)§ Z + byy(x) 23]

= a() — k1 [by, (6)y2 + By, (0)y 2 +by,22],  (2.5)
where a(x) is approximately 1 and the guadratic form is
positive definite. The linear terms iny,z have been
neglected in (2. 5) since we wish %2 to have a maximum
on the x axis.

We shall now restrict (2. 5) to be axisymmetric about
the x axis and allow a(x) and 6 (x) to be random func-
tions of x as follows:

n2(x,y,2) = alx) — k" {x) (y2 +22),

with
a(x) = 1 + ealx), blx) = by + €Blx).

(2.6)
2.7

Here € is a small parameter and a(x),8(x) are sta~
tionary stochastic processes with expected value zero.

If the random medium is not strongly focusing, i.e., if
the term — & 1(y2 + 22) is not present in (2. 6), then it

is natural to assume o = a(x,y,2),a random field.

When the field ¢ is confined by the focusing to a narrow
cylinder about the x-axis, then our assumption (2. 6) is a
reasonable one. The problem without focusing has been
treated by Klyatskin and Tatarskii.? The problem with
focusing and @ = a(x,y,z),8 = B(x,y,z) has been analyz-
ed by one of the authors,® but here we seek more de-
tailed information which is difficult to obtain by the
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method presented there. We now proceed with the for-
mulation of the present problem.

Using (2. 6) and (2.7), we rewrite (2.4):

B =302 +32)—by(y? +22)]¥ + e[t kalx)

— (2 + 228 Y, ¥(0,,2) =¥yly,2). (2.8)

By redefining dependent and independent variables we
may take b, = 1 as we do in the sequel.

We shall choose ¥, to be the fundamental mode of the
unperturbed problem and so

Yo(0,3,2) = (1/Vn) e (3222)/2, (2.9

The orthonormal modes k. (v, 2), p,q =0,1,2,+-+,
satisfy the eigenvalue problem

2[02 + 02— (y2 +22)]hy, (v, 2),
g (9,2) = [726p129g | T V2 H, (y) H (e)e 072272,

Mg=—(P+a+1), p,g=01,2---.  (2.10)
Here H,(y) denotes the pt* Hermite polynomial,
dr
H = (= 1 er?{ L -y"’> 2.1
p(y) ( ) € <dy1> e , ( )

and we have
o0 o0
f_w f_oo hpq(y,z)hp,q,(y,z)dy dz = 6,80 (2.12)

Thus the initial field (2.9) equals (¥, 2), the funda-
mental mode.

From (2. 8) and (2. 9) it follows that the solution of (2. 8)
is

_ 1 o ik *
Vi,y,z) = = exp( fo p(&)dé 5 fo a(E)dE)
X exp[— i px)(y2 +22)], (2.13)

where p(x) is a complex-valued random function satis-
fying the equation

d_;@ +p2@) +[1+eBW)] =0, x=0, p0)=— i
x (2.14)
Define u{x) as the complex-valued solution of
A%E) 111+ ep)]ule) =0, x=0,
dx2
w(@) =1, 2O __ . (2.15)
dx
Then we have that
21 dulx) 2.16
Ker) ulx) dx ’ ( )
Vix,y,2)
1 — jek x i
= at — = 2 2)).
oo e [ @t - L e v 2)

(2.17)

Thus the random field Y is completely determined by
the random function u(x).
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Our objective is to determine the statistical characteris-
tics of #(x), hence of ¥,given the statistical characteris-
tics of a(x) and B8(x). We shall do this in the limit of
large x and small € with €2x of order one. In particular
we shall obtain the first two moments of the beam inten-
sity J(x) on the beam axis

Jl) = |Y(x,0,0)12 = 1/(mlu(x)]2), (2.18)
and the expected value of @,,(x), the squared modulus
of the amplitude of the fundamental mode

e (2+22y2

Qo) =| [~ [ v&,y,2) dydz |2,

Qo0 = 1. (2.19)

We also study the transfer of power to the higher modes.
Note that J(x) and @y, (x) do not depend on a(x) since it
only affects the phase of ¥,

3. THE STATISTICAL PROBLEM FOR u(x)

In this section we analyze the stochastic differential
equation (2.15). Let A(x) and B(x) be complex-valued
random functions and define

ulx) = Alx) cosx + B(x) sinx,

w(x) = — Alx) sinx + B(x) cosx. (3.1)
Here the dot stands for d/dx. On using (3.1) in (2.15)
and rearranging the result, we obtain the following sys-
tem of equations for A(x) and B(x)

(i)
B(x)
cosx — sinx 0 0 cosx sinx\ /A(x)
=(nr cone)-s69 00 aime comn) men)
sinx cosx/\— B(k) 0/\— sinx cosx/\Bx)
(oo =(.)
B(0)) \—i/’
Let M(x,x’}), x = x’, denote the fundamental solution
matrix of (3. 2), i.e., the matrix-valued solution of (3. 2)
with initial condition M(x’,x’) = I, the identity matrix.

Since the matrix multiplying (4(x), B(x)) on the right
side of (3. 2) has trace zero we have

(3.2)

detM{x,x") =1, x=x', (3.3)

Thus M{x,x’) is a real 2 X 2 unimodular matrix-valued
process; it belongs in SI(2, R), the group of all such
matrices.

Define the matrices 0,,0,, b, by

5 1(01) 5 L(l 0> b L 0—1)
1""2__109 2_20_1’ 3—2(_1 0'

(3.4)
Since M € SI(2,R), we can write5

Mx,0) = % 20°, (3.5)
Here x (x), 6(x), ¢ (x) are random functions. The para-
metrization (3. 5) is analogous to the Euler-angle para-
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metrization of SU(2), the group of 2 X 2 unitary unimodu-
lar matrices, except that here x, 8, ¢ vary over the
ranges

0=y <d4r, O0=so¢<2r, 0=0<w, (3.6)
Now we insert (3. 5) into (3. 2) and, after some computa-
tion, obtain the following system of equations:

I

X = €B)[1 + cos(2x + x) cothd],

6 eflx) sin(2x + x),

Il

¢ =— eflx) csch cos(2x + ),
6(0)=0, x(0)+(0)=0,

arbitrary.

X (0) — ¢(0)
(3.7

Let us denote expected values by E{ }. As in Sec.2 we
assume that

E{B(X)} = 0,
E{px)Blx")} = R(x — x').

R(x) is the covariance of the process S(x). Let us also
assume that

(3.8)
(3.9)

IBix) =1 (8.10)
almost surely. Under these circumstances and a few
other additional assumptions on S(x) we may use form-
ally a result of R. Z, Hashminskii? to obtain the asymp-
totic behavior of the processes x (v}, 6(x), ¢ (x) defined

by (3.7). We say formally because one condition in that
theorem cannot be satisfied namely, the right sides of
{3.7) are not bounded as a function of x, 8, ¢ in the

range (3. 6). By making additional restrictions on B{x)
however, the following analysis can be made rigorous.19

The above mentioned result is as follows: Let
x©r) = x(1/€2), 0©)(1) = 8(r/€?),
(1) = ¢(r/€2).

Then if f(x, 8, ¢) is any bounded smooth function of its
arguments, the conditional expectation

T =€,
(3.11)

PO (r;%,0,0) = E{f(x© @), 00(), 6 ©@))}, (3.12)
given x ©X0) = y,0@)(0) = 6, ¢ ©}X0) = ¢ converges as

€ =0 to PO(r;y, 0, ¢), which satisfies the diffusion
equation

] 2 1 2
O (22 4 como L+ L)p«»

oT 262 26 sinh28 9¢2
2p )
+ < [ R(s)ds +ycoth29> il

‘o 3y 2

(V)]
- 3 fooo R(s) sin2sds (1 — csc29) %)—— .

X

P(O)(O;Xsey(b) =f(X’6)¢)); 7:% focoR(s) cos2s ds,
(3.13)
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In the next section we shall see that the quantities of
principal interest to us do not depend on x . This leads
to a very significant simplification in (3. 13) since the
terms involving the x derivatives can be ignored on the
right side of (3.13). The differential operator in the 8,
¢ variables in (3.13) is the Laplace-Beltrami opera-
tor in the Lobachevski plane with 6, ¢ as polar coordin-
ates.11

This could have been predicted heuristically from the
second and third equations in (3.7) since the third may
be written in the form sinhf¢ = — €B(x) cos(2x + ).
Thus, the ‘‘radial velocity”’ 6 and the ‘‘transverse velo-
city” sinhd¢ are proportional to sin(2x + ) and

— cos(2x + x ), respectively. Since x is a fast varying
variable in the above limit while x is slowly varying, we
would expect these equations to approximate a Brownian
motion which is characterized by the fact that all direc-
tions of infinitesimal motion are equally likely. The
first and second equations of (3.13), on the other hand,
would lead us not to expect Brownian motion in the
(6,%) plane.

The Laplace-Beltrami operator is self-adjoint relative
to the volume element
sinh 6 dod¢ (3.14)
and hence, because 4(0) = 0, it suffices to have the funda-
mental solution of (3.13) (with the x derivatives absent)

which is initially concentrated at § = 0. This is given
by3

e vT/4 00
4[2‘(,,7,7 y3/2 e

pe P4yt dp
Jeoshp — coshé ’

6=0,

P(T’G’qb) =

0=¢ < 2r. (3.15)
This function is the transition probability density, rela-
tive to the volume element (3. 14), of () (1), ¢ &3 (1)

given 8(0) = 0, ¢(0) arbitrary, in the limit € —» 0,1 fixed.
Thus if 7 (4, ¢) is a bounded smooth function of § and ¢,
we have

lim E{ (6 (r), 9© (1))}

= fow (fozwf(e,wd(b) P(r,9) sinhg d6. (3.16)

Here and hereafter E{ } denotes expectation conditional
on #(0) = 0. In (3.16) we have also used the fact that P
of (3.16) is independent of ¢, i.e., $%€) (r) is uniformly
distributed in (0, 27) in the limit € - 0, given 6(0) = 0.

We now proceed with the application of (3.15), (3.16) to
the beam problem.

4. MEAN INTENSITY OF THE BEAM ON ITS AXIS

First we alter the original formulation (2. 8) of the prob-
lem for the field Y/ {x,y, z) in the following way. Accord-
ing to (2.4) the source of the beam is located on the
plane x = 0,and J{x) in (2.18) is the intensity of the beam
at (x,0,0). Thus J(x) is considered a function of the
observation point. From (3.1) and the definition of the

matrix M{x, 0) we have
wix)\ cosx sinx\ /M;;(¥,0) M ,(,0) 1
(it*(x)) B <—— sinx cosx) <M21(x, 0) My, 0)> <~— i)’
4.1)
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where now we have written #* for # to indicate that it
corresponds to waves propagating in the positive x
direction. We shall later use superscript ~ to indicate
propagation in the negative x direction.

If we locate the source at the point x and replace eiw! by
eiwt then the beam points in the negative x direction.
We may seek the intensity at x = 0 as a function of x,
the location of the source. With this point of view we
have

Lo e stenie )

(4.2)

where u~(x) and #~(x) are defined by (4. 2). Thus,J (x) =
(1/7)|#~(x)["2 is the beam intensity at (0, 0, 0) consider-
ed as a function of the location of the source. Similar
remarks hold for @g,(x). Hereafter we shall adopt this
point of view. While u~(x),J (x), and @g,{x ) are physi-
cal quantities distinct from those denoted by u(x),J(x),
and @ () in Sec. 2,J(x) and @, (x) have the same
moments in both cases.

Let us now express J(x) in terms of the functions yx, 6,
¢ of (3.5). From (4. 2), (3.4), and (3. 5) it follows that

(=t (o o)
cos¢/2 sing/2\ /1 (x)
x( sing /2 cos¢>/2>(u (x) )’ (4.3)

and hence

w(x) = eilk G/ 2) +x] {COS[¢>(x)/2] e Gy2

+ 4 sin[¢(x)/2]eo@V2}, (4.4)
w(x) = et &Y 2)+x] {Sin[d)(X)/Z] e 62
— i cos[¢(x)/2]e®=¥2},  (4.5)
J(x) = (1/7){cos2[¢ (x)/2]e 9@ + sin2(¢ (x)/2]eo@}1,
(4.6)

For comparison we note the corresponding form for
JH(x):

J(x) = (1/m)[cos2(x + x /2) €8 @) + sin2(x + y/2)e 61

To find the expected value of J~(x) in the limit x -> o0,
€ — 0, €2x = 7 fixed, we use (4.6) in (3.16) and obtain

X ~ _T_ _ 00 21!_— d)
o (€ [0 oot

0

-1
+ sin2$ ee) dqb] P(r,6) sinhd d6. (4.7)

Here P(r,8) is given by (3.15). The angular integral
in (4.7) is elementary. We have

. 27 d) _ . Q -1
27 [¢] 2 7} — >
fo (cos 5 € + sin 5 € ) dp =27, 6=0.

(4.8)

Thus, since P(r, §) is a probability density, (4. 7) and
(4. 8) yield

lim E{J(r/€2)} = 1/m = J(0). (4.9)
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This is the main result of this section.

The result (4.9) is somewhat surprising, Because the
operator on the right side of (2. 8) is self-adjoint we
have, for any x = 0,

«w oo 00 ~(y2+22
f.: f_w Wx,y,2)|2dydz =£m f_w ez yn 22 dy dz = 1.

(4.10)
Thus, in addition to (4. 10) which is true for allx = 0
without taking expected values, the expected value of the
intensity at a point on the beam axis tends to the con-
stant 1/7 when the fluctuations are weak and the genera-
tor is far away. This is a consequence of the special
form (2. 6), (2. 7) of the strongly focusing index of re-
fraction.

We could, in principle, obtain (4.9) by using the methods
of Secs. 3 and 4 in a previous work of one of the
authors.8 This, however, is not a simple matter. Our
analysis bypasses these difficulties because it exploits
the explicit representation (2.13) of the field . This
representation is in turn a consequence of the form
(2.6),(2.7) tor n2(x,y,2).

5. FLUCTUATIONS OF THE INTENSITY

In this section we compute the expected value of the
square of the difference of the beam intensity J(x) from
its expected value

lim E{[J (1/€2)] ~

E[J (1/€2]})

= 11_)1% E{[J(r/e?))2} ~ 12, (5.1)

From (4.6),(3.15) and (3. 16) we have

ling E B[J‘GE)T = foog w2 fozﬂ(cos2 52? e o

0
-2
+ sinz—z? ee> do

P(r,p)sinhg dg. (5.2)

The angular integral is again elementary:
¢ - 2@ o) 72
fo cos? 5 e ® + sin? 3 e®) d¢ = 21 coshf,

6=0. (53)

Thus, using (5. 3) in (5. 2) we obtain
2
m =) ()] f -
e-0 €2
x I

~yt/dge2 oo i
__c yt/dq f pe-p?4yr fP coshf sinhf df dp
2V2n (y7)3/2 "0 0 Jcoshp—cosho
e v /4q-2

T 2V2 (y7)32

e /42

2o (YT)S/Z

pe P 4y71dp
vcoshp — coshé

[+ e]
coshé sinhd fe de

o
xfo pe-p 4T 3_3‘{—2_ (1 + 2 coshp) sinh—g—dp

= Tl’"2€277, (5. 4)

We have therefore
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}Lnox E{(J (1/e2) — E[J7(1/€2)])2} = m-2(e2y" — 1), (5.5)

This is the main result of this section. Its physical
meaning should be clear. Even though the expected
value of the intensity E{J (x)}is approximately con-~
stant when € is small,x is large,and 7 = €2x is of order
one, the expected value of its fluctuation grows exponen-
tially in the parameter 7 at a rate equal to 2y where y
is given by (3.13). The fluctuations in the intensity are,
of course, zero on the plane of the source and (5. 5) is
indeed zero when 7 = 0.

6. MEAN POWER OF THE FUNDAMENTAL MODE

In this section we compute the expected value of the
power @, q(x) in the fundamental mode, given by (2.19),
in the familiar limit.

By using (2.17), (2. 19) and (4. 4), (4. 5), we find that
Qoolx) = 2fcosho(x) + 1]1, (6.1)
On using (6.1) and (3.15) in (3. 16) it follows that

-y7/4 0
lim & Q(;O(L>$ =21 [ sinh6[coshd + 1]-1

€2 VIT (y)3/2 "0

x [7 2L D g
6 coshp — coshf

_ e rT/4
V2m (y7)¥/2
% f°° pep?/ayr f" sinhg d6 dp
Y 0 (coshd + 1)Vcoshp — coshh

- 4e-77/4 0 p2 e’Pde

s i (6.2)

Formula (6. 2) is the desired result. In the limit under
consideration the expected value of the power in the
fundamental mode decays exponentially with 7. For 7 =
0 the expected value equals 1 of course, Numerical

1.0

0.9

0.8

0.7

[oX]

7.5

04

Q.3

lim E{Qoo(T/sz)}

0 i I8 { i { i
4

YT
FIG.1. Here we plot the expected value of the power remaining in the
fundamental mode at the point x = 7/€2, in the limit € — 0 versusy7.
See formula (6. 2).
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integration of (6. 2) yields the graph shown in Fig.1.
The function (6. 2) arises also in a different context3,12
and its graph was obtained there.

Finally, we note the result (6. 2) and the graph shows in
a very explicit manner how power leaks out of the
excited (fundamental) mode into the other (higher)
modes.

7. EXPECTED VALUE OF THE POWER IN HIGHER
MODES

In previous sections we have been concerned only with
the total field on the beam axis and with the power in
the fundamental mode. However, one may also consider
the higher modes of propagation. We calculate here the
expected value of the power in each higher mode in the
familiar asymptotic limit. We also derive an expres~
sion for the generating function for the modal energy
distribution.

We define the (2p, 2) amplitude of the field by
I-zp,zq(x) = f:qz thlzq(y,z)d/'(x,y,z)dydz,

p,q:0,1,2,..., (7.1)
where the basis functions {i,, , } are given by (2.10)-
(2.11). The power in the (2p, 2g)th mode is then defined
as

Qp2s(%) = 115,0,012 ,  p,g=0,1,2,.... (1.2)
We need only consider these modes since all others
vanish., Utilizing the integral identity for Hermite poly-
nomials, 13

(2p)!

ID ety nar =7 EEL (2 y),

1 {(7.3)

we calculate @5, 5,(x) in terms of ™ and u:

Qzp.04(%) = 4727072 <2§> (23>

X [(iu-lz + (a2 + i @ )* — ({r)*u_))_l

btq

(lu‘lz + a2 — i) — (ﬁ‘)*u‘)) ] 1.4)

lu-(2 + [ (2 + i@ @)* — @) uw)

Here we have used (2.16), (2.17) for ¢~ and we have ex~
pressed the factorials in terms of binomial coefficients.
* stands for complex conjugate. When we use (4.4) and

(4. 5) in (7.4), we obtain the following expression:

2p\/2q - .
> = 22(rr9)*1 ho + 1) 1tanh2(»+9 8
sz’zq(x) ( >< q)(cos Y ttan 5 -

(7.5)

While we could calculate the expected value of @y, 5.,
we prefer first to sum over the degenerate modes
corresponding to the same v =p + ¢. Thus, we fix » and
define @, (x) by

r=20,1,2,"-". (1.6)

When we employ the identities
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2 (00,2, e (5)07)
- 1)r<“ i) @.7)
we find that

Q,(x) = 2(— 1) <— :) (coshd + 1)1 tanh2r —g— . (7.8)

Next we use (7.8) and (3.15) in (3.16) and obtain

e y1/4

~ 1
mEle (Y11
8 BQ' <e2>£ W2 (y7)¥2

—1 "
xf”[Z(—- )7 ~! tann2 (9/2)}

@ coshd + 1

9 o0 pe'f'z/‘”"dp
0 Jcoshp — coshd

e /4

27 )72

sinh® dé

fo peP¥4YF,(p)dp, (7.9)

where F,(p) is given by

fP tanh27(6/2) sinh6 do
0 (coshg + 1)ycoshp — coshd
(7.10)

Bo) =26 17 (7))

r

The qualitative behavior of the expected value of the
power in the th mode may be obtained from (7.9), For
fixed » > 0, the expected value is zero initially (r = 0)
and increases with increasing 7 until 2 maximum is
reached, after which it decays. For fixed 7, the expected
value of the power in the »th mode decreases with in-
creasing . (7.9) and (7. 10) are the main results of this
section. The function E (p) of (7.10) may be simplified
through the change of variable T = tanh2(6/2),

E(p) =v2 (~ 1)r<— 1{> fofanh /2
T7dT

% VI=T JI—=T) cosh2(p/2) — 1 (7.11)

In this form the integral can be evaluated by repeated
integration by parts using formula (231, 7a).14

It is also possible to define a modal generating function
for which the integrations are elementary. Specifically
we define G by

G(x;z) = %so Q,(x)z7. (7.12)

On using (7.9) we find that

~y1/4 ey
im E T . =._e_7.7____ -p2/ 4yt .
18 G<e2,’z>$ ST (e Jo PR32,
(7.13)
where F(p;z) is given by
F(p;z) = Z)Oﬁ;(p)ﬂ. (7.14)
o
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We now insert (7.11) in (7.14) and obtain

tanh?(p/2) 1
Y1 —T V{1 — T)cosh2(p/2) — 1

F(p;z) =2 fo

3 (‘5)(- 1)7 T)* dT

x
r =0
tanh2(p/2)
o 1
0 V11— T V({1 —~ T)cosh2(p/2) — 1
x94T _ (7.15)
1—zT

This last integral is known; formula (221, Tb) yields14

V2
(1-—-2)[A—-2)S+1]

x JI=2[A—2)5 ¥ 1] |, S = sinh2(p/2). (1.16)

log[1+2(1—2)5—2

F(p;z) =
(pZ)\/

Thus, we have obtained a representation of the expected
value of the modal generating function as a single inte-
gral over p, (7.13). Clearly the expected value of the
power in the vth mode may be obtained by differentia-
tion as follows:

~ ~yr/4 © 1
lim E z sz_e_Y_T___ e P 4yT 2
€0 gQr(ez) 2V27 (y7)3/2 fO P 7!
X[Eﬂp_’ﬁ} dp. (7.17)
2z7 z2=0
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U and V sectors in the Bronzan—Lee model
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The Lehmann—Symanzik—Zimmermann (LSZ) formalism is used in the Bronzan—Lee model to investigate the
scattering processes in the lowest sectors. In this model, there are three heavy recoilless particles U, V, and

N interacting with a 8 particle. The processes allowed are U~V and V_N@. In U and V sectors of this
model all 7 functions have been calculated, and relevant scattering and production amplitudes are evaluated.
The mass, wavefunction, and vertex function renormalization constants have been found and they agree with
the results previously obtained by Bronzan and later also by Liossatos.

I. INTRODUCTION

The Lehmann-Symanzik—-Zimmermann! approach has
been often used as the calculation technique in the Lee
model? to determine the scattering amplitudes in vari-
ous sectors. When the Lee model was first proposed,
and later on when Pauli and Killén gave a sound mathe-
matical foundation to the model, the usual technique was
to solve eigenvalue equations for the corresponding
sectors of the model, and the solutions were used to get
the scattering amplitudes of the relevant processes.
The dispersion-theoretical technique based on the
Lehmann-Symanzik~-Zimmermann formalism was first
used by Treiman and Goldberger3 to calculate the N9
scattering. The technique has been used by Amado4 to
calculate the V6-scattering matrix in the heavy mass
approximation for recoilless V and N particles. In
these papers the calculations were restricted to one
particular process only.

Maxon and Curtis> were first to show that the LSZ tech-
nique can be used to compute all relevant processes in

a particular sector simultaneously. Their method was
based on the fact that the S matrix can be expressed in
terms of the 7 functions, which are the vacuum expecta-
tion values of the time-ordered Heisenberg operators
corresponding to a particular process. These 7 func-
tions satisfy coupled Matthews—Salam equations® con-
necting different processes. In the Lee model, since
each state vector can be expanded in the Tamm-Dancoff
sense and each sector is a closed subspace of Hilbert
space, these equations involve 7 functions from a parti-
cular sector only. In the lower sectors, the solutions of
such equations are not too complicated. Maxon and
Curtis5 used such techniques to obtain all 7 functions in
the V sector. Scarfone’ extended the work in the VN
sector, where he showed that the VN bound state problem
can also be treated along the same lines. In the V@
sector Maxon8 reduced the coupled linear differential
equations to singular integral equations of the Musk-
helishivili-type? and obtained an exact solution to get
the 7 functions. The problem in the V6 sector was first
discussed by Pauli and K#llén? and later explicitly
solved by Amado,* using the dispersion relation tech-
nique under the assumption that V and N are heavy
recoilless particles. Pagnamental® obtained the solu-
tion valid off the mass shell, which also yielded the
Ng6'production process amplitude. Maxon and Curtis®
method of solution gives simultaneously all the 7 ampli-
tudes corresponding to all physically relevant processes
in the sector. Scarfonell used the same technique in the
VV sector and obtained the relevant scattering ampli-
tudes. The technique involved requires the solution of
similar singular integral equations. Fortunately this can
be accomplished.

Bronzanl2 introduced a modification of the Lee model,

a0 J. Math. Phys., Vol. 14, No. 1, January 1973

which subsequently became known as the Bronzan-Lee
model. The modification consists of including a heavy
recoilless U particle along with the usual V, N, and @
particles. In the Bronzan—-Lee model, the processes
allowed are U 2 V9 and V & N6. This is quite interest-
ing because, in contrast to the usual Lee model, this
model has a nontrivial vertex function renormalization
associated with it. The problem of renormalization has
been solved by Bronzan by using a Wigner—Brillouin
perturbation technique. Chen-Cheung!3 also indepen-
dently used a similar model to study the renormalization
problem. The Bronzan-Lee model has also been used
by Liossatos14 to study the compositeness conditions,
by establishing the fact that in the limit Z, - 0, the
model becomes equivalent to a model containing only U,
N, 6 particles interacting via some four-point inter-
actions,

In this paper, we apply the LSZ technique to the Bronzan-
Lee model to calculate all the so-called “physical
processes” in the lowest sectors of the model. The re-
normalization constants have been obtained by using the
standard techniques. We have calculated all 7 functions
in the two lowest sectors of the extended model. In Sec.
II, we introduce the model and obtain the selection rules
for reduction of the Hilbert space into sectors. We also
obtain equations of motion of the fields. In Sec.III, we
define the 7 functions for the V sector, obtain the
Matthews—Salam equations and solve them. Finally, we
use the 7 functions to get the amplitude of the scattering
process in that sector. In Sec.IV, the U sector is treated
extensively. The Matthews—Salam equations of the
corresponding sector are deduced. Mathematically the
problem reduces to solving similar equations in the V8
and VV sectors of the usual Lee model already treated
by Maxon8 and Scarfone.1!l The coupled linear differen-
tial equations have been reduced to two singular integral
equations. We have solved them following Maxon8 and
Scarfone.ll The renormalization constants have been
deduced by standard techniques. In Sec.V, the 7 func-
tions are used to obtain the scattering amplitudes.

ll. THE BRONZAN-LEE MODEL
The renormalized Hamiltonian of the Bronzan—~Lee
modell2.14 for three heavy recoilless particles U, V, and
N interacting through a 8 particle is assumed to have
the following form

H=Hy+H,,, (1)
where
Ho=myZyVy by + my Zy by by + my ¥y vy

+ 2 waga, (2)
k

Copyright © 1973 by the American Institute of Physics 90
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and
Hy = 8,2,(Yp ¥ A + AMYpiy)

+ £5(¥3 YyA+ A+‘PX/ ‘Pv)
—Omy Zybpy — omy Z, Y3y (3)

The operators Y, , ¥, stand for the renormalized annihil-
ation operators of the U, V particles. y,, and a, are the
annihilation operators of the N and 6 particles, respec-
tively. g, and g, are the renormalized coupling con-
stants, om, and &m, are the mass renormalization con-
stants. A is given by the following expression:

fw)

=2,X(w)a

A ? (w) ko J—

X(w) = ,  w=(R2+ p2)V2, (4)

where f{w) is the usual cut off to assure the convergence
of integrals. The commutation relations are given by

w’m V’I;] = I/ZU! [‘I/V’ ‘ppt] = I/ZV’ [‘sza W&] =1,
[ay,a] = Sgyr - (5)

All other commutators vanish, If we take anticommuta-
tion relations for U, V, and N particles, the results of the
calculation do not change. If we define

and Q=Zydg ¥y + Z, Wy ¥y + ¥y (62)
Qo =Zy¥i ¥y — Wi¥y + L oy, (6b)
we notice that
[H,Q,] = 0. (N

Thus the sectors of this extended model are specified by
the eigenvalues of @,,i.e., q;.

The equations of motion turn out to be

2, (13~ m8) Wult) = &2, DX D), (82)
2, (15 — m9) wit) = ,2, EX(w)a,(t)wU(t)
+ &, E}X(w Yy(ag(?). (8b)
(i — ) YD) = £ DX @Iy (0), (8¢)
(15 — ©) ax() = £,Z, X (@)W ¥y(D)
+ & X@) WD), (80

where we have put m9 = m, — omy and m@ = m, —
omy .

Ii. vV SECTOR (g, =1, g, = 0)

Following Maxon and Curtis,® we can use the LSZ
formalism to calculate the 7 functions of this sector.
We label 72 as the functions of sector A. In this sector
we define

= 0] (¥, (s)¥3) | 0, (92)
¥ (s, w) = X Hw)0| T(¥y(s)ay(s)¥;) 10}, (9b)
7Y (s, w) = XY w)X0| T(Wy(s)ay ¥3)1 0), (9¢)

TY(s, @, ) = X @)X 1w KOIT (Yy () () 3| 0), )
(9d

J. Math. Phys., Vol. 14, No. 1, January 1973

91

where T is the usual time ordering operator and w(s)
and a,(s) are the Heisenberg operators.

The resulting Matthews-Salam equations are

z, (i~ mg) () = i8() + £, DXL (s,0),  (100)

. d /TZV(S, w) (
‘s T T = g,71(s), (10b)
( ds N ) TZVR(S""J)s 21
(i% My w) TY(s, w, w’) = ()b ) X 2(w)
+ &37¥R(s, w), (10c)

where we have again put mQ =m , — om,,.

Since 7(0, w) = 7, (0, w) = 0, we see that 7./ (s, w) =
T (s, w) Now we take the Fourler transform of 74
defmed by the relation

THS, ) = j AW e iWs TAMW, -+ -). (11)
We get the Eq.(10a)—(10c):

ZW —mPFY (W) =1+ g22X2(w)r (W,w), (12a)

(W —my — )T (W, w) = g,77(W), (12b)

(W —my — 0T (W, w, w) = X 2(w)dpr + Z557(W,w’).

(12c)
The final forms of 7V(W, --+) are given straight-
forwardly by
V(W) = Lk (W — my), (13a)

YW, w) = T(W, w) = g3/ (W — my)(W — my — w + i),
(13b)
X2(Ww)8yy.
(W—my — w + ie)
8%
(W —my )W — iy — w+ €)W —my — w' + i€)
(13c)

?BV(W9 w,w’) =

Here we have defined

hi(x) = h(x t i€) = (x — m * ie)at(x), m=m,—my
(14)
and
a(x) = ax = i€)
=1+x_mf°°dw Im#A* (w) ’ (14a)
ki (w—m2{w —x F i{€)
where
Imht(w) = + (g3/4M)f3(w)(w? — u2)20(w — p).  (14b)

The quantities om, and Z, are obtained, as usual, by
requiring that TIV(W) must have a pole for W =m, and

the residue of 7{(W) must be one. We get

1 o0 Imht(w
omy == 5 Ji do 102l (15)
and
z, __1__._[ dw M (16)
(w—m)2
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The scattering mairix for N6 — N@' is given by
Skxr = Oy + 27 8{w — @ IX(w)X{(w")
(w — )2 (W, w, w")‘WWNW. 1
Hence
Sy = Oy — 2mi6(w — W )X(w)X(w)gf/ h (w)]. (18)

IV. USECTOR (¢, = 1,9, = 1)
In this sector we define the 7 functions as follows:

TY(s) = Ol T(W,(s)¥3) 10}, (19a)
77(s, w) = X HwK0| T(Wy(s)a(sWi)10), (19b)
T (s, w) = X~ Hw)O0| T(¥y(s)ay ¥;) 1 0), (19¢)

(s, w, w") = X Hw)X Yw KO T (Wy(S)ag(s)ay(sW3) | 0),

(19d)
(s, w, @) = X Hw)X-Hw )0 T (s)agay. ¥$)1 0),
(19¢)
(s, w, w) = X Hw)X Hw" 0| T (¥ (s)ay. (s)ag ¥3) | 0)
(19f)
(s, w, @', w") = X Hw)X-Hw )X (w")
X 01 T (Wy(S)ay (S)aga (s)ag ¥3)10)
(19g)

T8, w, @', ©") = X @)X Hw )X L(w")
X 01 T (W (s)ay(s)ag. ag. i) 0),
(19h)
(s, w, @', @", 0"} = X-Yw)X Hw)X Hw" )X Yw")

X (01 T (W (5) g (S)agm (S)agag. w3} [ 0. (191)

The corresponding Matthews—Salam equations are

2, (1 = mg)r¥(s) = i6(s) + £,2, DXUw)TY(5, ), (200)

Zv('a%—MS~ w) %Tz”(s,w) g

Tgyg(s; w)

77(s, w, w")

=g,Z,7Y(s) + &, LP X2(w") { } , (20b)

T{r(s, w,w’)

~

(i—ci—mN——w-—-w’)STg(s’w’wf)
ds (73%2(81 wyw')

T¥(s,w) + 7¥(s, w")
—gzg d ¢ }, (20¢)

(s, w) + (s, w’)

2y (1 — m§ — W) 75, @, ') = ()0 X2(w)

+ g, Z, 74 (s,w) + %v)'ngz(w”)'rs"(s, w,w”, w’), (204)
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. d
(zd—s —my — W — w”) (s, w,w’,w")

= &[1{(s, w, @) + 70(s, w, w")], (20€)

(ia% —my—w - ") (s, 0, W', w")
= g2[T4U(sa w’y (4)) + T4U(s: w”, W)], (20f)

. d
(13—8» —my — o'~ ") (s, w, W, ", w")

5 1015 ”+ 6 ”6 14 111
—io(s) xx kT Ouke owk
X{wX(w)X(w")X (™)

+ go[Td (s, 0", w, ') + T (s, w" @, w)].  (208)
If we go over to the Fourier transform defined by Eq.
(11), we find that Egs. (20a)-(20g) change to
Zy(W—-mTEW) =1+ g,Z, %3 X)W, w)  (21a)
FZU(W: w)
Zy(W—md — w)<
Te (W, w)

~

T3U(W’ @, w') z (21b)

= glzl?lb’(W) + &y Z/’\ X2 w)
k TR(W, ©, »)

% ?SU(W7 w, w’);
(W—my ~ w— w)

?3!{&(Ws w, w')
{TZH(W, w) + ?ZU(W, w’)

TR (W, w) + (W, »)

(21c)

Zy W — m — )T (W, w, @)

+ 2 g XHW"F(W, 0, 0", ) (21d)
k"

(W—my — w — "V (W, w, o, 0"

=g (TP (W, w, w') + T (W, w,w")] (21€)

(W~ my — 0 — 0% (W, w, w, w")

=g [TF (W, w', w) + T (W, 0", w)] (21

(W — mN — wll — wm)?sU(W’ w’ wr’ w", wm)

- 6kk"6k'kl" + okkl" ék'k"
X(w)X(w)X(w")X(w™)

+ gZ[?SL;t(W! w”: w, W)+ ?SUR(Wy wm: w, w')]'

(21g)

From the Egs.(21b) and (21c¢) and by defining

P (x, w) = Bx, w — i€) = TP (x + my, w)/g,Z,TV(x + my).
{(22)

where we have put W — m;, = x, we get an integral equa-
tion, analytically continued in the complex z plane:

h(x — 2)Yb(x,2) = 1 — _117 [ dp k(@) 4

(x, w). (23)
I w+2—x
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This equation is equivalent to Liossatos' 14 integral
equation if we substitute

®(x, 2} = ¥(x, 2)/h(x — 2). (23"
Scarfone also obtained a similar equation while deter-
mining the 7 functions for the VV sector, The solution
can easily be obtained either following the prescription
of Truemanl5 or that of Maxon.8 It is

B, 2) = C xl,m
x (x — ; — hz("_ ) (1 (v~ 2)— I ( —-m)})
{24a)
where
Clx,m) = Z {1 + h*(x — m)I} (x — m)]. (24b)
The expression [,(2) is given by
1 = 1 1 i
1 24
L= de Im(k*(an) w2
and satisfies the following identity:
Ix(z)-1;(x-m)* 1
X—z2—m _h(x——z)h(z)
x— 2m
h{x —m){x — 2 —m){(z — m)
LA R mm) (24d)

Z—m

We can easily verify that this solution is identical with
the solution of Liossatos, 14 provided we note that if

m = 0, A(z,x) and A{x) introduced by him are related to
our [ (z) by the following relations

A(z,x) = [(x — 2)/2] L(x — 2) — (x/2) I} (x) (24¢)
and

A(x) = Alx, x) = — L}(x). (24f)
From relation (22), we find

. gl'fl”(x +my)

TY(x + my, w) = ———T(w,x), 25

Bl my, ) = S ) (25)

where we have put, following Liossatos,14

Nw,x) = Z,h*{x — W) (x, ). (252a)

I'(w, x} is the U V9 off-mass-shell vertex function.

Substituting (25) in (21a) and carrying out the summation
over the momentum by converting it into integration, we
find

T‘l"(x + my) = [Gx)]L, (26)
where

Glx) = Zy(x + my —m) — g2Z%J(x) (27a)
and
g8J(x) = bmy, + §x —m — h*(x — m)/2Z,C(x,m). (27b)
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Following Maxon and Curtis,5 we note that 7, (x + m,)
must have 2 pole at x = x, = m, — my, where m is
chosen to be the physical mass of the U particle. This
is satisfied when G(x,) = 0. This condition gives us the
mass renormalization

Zyomy = g2Z22J(x,)
= 3¥2[xg — 2(m — 6my) — h'(xg — m)/Z,Clxy,m)],
(28a)
where we have set
v? = 83 22/g3

To get the wavefunction renormalization constant Z,, we
set 0|y, |U) = 1, where Yy, is the renormalized annihila-
tion operator. ThlS leads to the result that the residue
of rlU (z +my)atx = %, becomes unity, which is again

(28b)

equivalent to the condition G'(x,) = dG(x)/dx]__, = 1.

We thus get

71 +'y2 v2 B(xy —m) — [h*(x, — m)]zqo’(xo — 1)
T2 2zp [+ (kg ~ m)E (3 —m)]2

(29)
The vertex function renormalization constant Z; is deter-
mined by requiring the on-mass shell condition

Dlxg —m,x5) = 1, (29a)
We thus obtain
Z, = Clag,m)=Z,[1+ h*(xg — m)I+ —m)]. (29b)
We can rewrite G{x) in the following form:
Glx) = Zy{x — xo) - ngng(x) - J(xg}}

= D(x)/2Z ,Clx,m), (272%)
where
D(x) = Z,(22; — y2)(x — x()Clx,m)

+ y A (x — m) — h¥{xy — m)C{x,m)/Clxy, m)).

(27a")
In deducing {27b) we carried out several contour integra-
tions. Thus, summarizing the results, we find

VW) = 1/G(W — my) = 2Z,C(W — my, m)/D(W — my),
(30a)

TI(W, w) = [&,/GW — my)h* (W — my — @)|T(w, W — my).
(30b)
?38(W, w, W'}
= &[T (W, w) + T (W, w)/(W —my — w — w' + ie).
(30¢)
The other two 77 functions 7}, and 7, become exactly
equal to 7'2” and 7‘3U , respectively,

From Eqs. (21d), (21e), and remembering T/(W, w) =
(W, w), we get

Az — WP (x + my, @, W) = Y X Hw')

—~ &3 2

"

x [XHw" T (x + my, w, 0"}/ (0" + & —x — i€)]. \
(31

+ glzlrzU(x + my, w)
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Substituting
T(x, w' — e, w)

= [1/g3h* (x — w "Y{h*(x — w)[h*(x — ')

XTP(x + my, w, w')~ g X-2(w)]} (32)
and defining
Lx, w) = (y/g2)h* (x — w)7§(x + my, ), (33)
and
h(x — 2)T{x,2, w) = L(x, w) + 1
X—2—w

Ampr(e”) T(x, w" — ie, w). (34)
w'+z—x

As usual in arriving at (34), we have converted the sum-
mation to an integration and analytically continued the
equation into the z plane. We return to our problem,
when we put 2 = w’ — Ze. This is an inhomogeneous
Muskhelishivili-type of integral equation. It is perhaps
worth mentioning that this integral equation, so far as
the mathematical structure is concerned, is similar to
the integral equation Scarfonel! solved in connection
with the VV sector of Lee model. Although the structure
is the same, the inhomogeneity function L(x, w) is dif-
ferent from that of Scarfone. The reciprocal of the com-
plex function #(z) on the real axis takes the roleof a V
particle Feynman propagator, whereas in the VV case
the function is replaced by the VN propagator. Fortun-
ately in both cases the analytical structure is similar:
The cut is from p to infinity, and the behavior of the
function at infinity is the same. We can, therefore, solve
it using the standard technique adopted by Maxon.8 We
find

—‘1;‘_[# dw

X—2Z2—m

Tix, 2, @) = R(x — 2)(w — m)(x — 2 — W)

+ ®(x, 2) ':L(x, w) ~— (h*Z(Vw\)
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N atx — w) ((x—2w)(x—z—m) L —2)
w—m (x —z — w)(z — w)
Emem __(“’_“_"1)_1;(w)). (35)
2 —w (x—2— w

The final form of 7¥(x + m,, w, w’) after some algebraic
manipulations turns out to be

Oy X%(w) £%

TE(x + my, w, w)

TR — W) (x— w—m)x — @ —m)

X [ L - ( ! ——(w-—m)]*(w)
x— @ — w+ ie \a(wa(x — w) *
(x — w—m)2 .

T (0~ m)(w — o) L= w)

(x — 20)(x — W —m)2L; (x — W)

(w—m)x — w— wlw — w)
h*(x —m)

(w—m)w —m)

X ((w—m)l;(w) — - w—m){x — w)

1
- o w)ar(z — w))
L @ e — @)~ (x— 2 (x m)]]
[1+ k(x —m)L{x ~m)]
83T(w, x)

Z, G x — w)(x — w —m){x — w' —m)

h*(x — m)

x(x—w——m)<1+

I'{w) IHx — w — W - +(x — w') — (x — +(x —
-2, — w)< p L =@ mn - @) — (= 2m)Ltx — ]
X — w—m w—m [1+h*(x—m)1;(x—m)] (36)
1 1
+ — The other 7 functions are expressed in terms of
oy —2 —w) (w—mlalx—2)x—2—w) | 7V(W,w, w')as follows:
R &[TV W, w, w) + TYV(W, w, w")
W, 0,0, o) = LA HLAAS) (37)
W—my — w — w’ + e
W, w', w)+ TV (W, w,w
AW, 0, 0, o7) = L O 8, )] (38)
W—my —w — w" + i€
and Oy r 0 + Oy pm®
?SU(W’ w, w,’ w”’ w”’) = ' nkk" k":m — k'k':/ " .
X(w)X(w )X (w"X(w" YW —my — 0" — w" — i€)
+ gAY (W, w, w") + TI(W, w, w”) + TF(W, o', ") + T (W, ', w")] (39)
(W—my —w—w + ie}(W—my — 0" —w” + i)
U -
We have thus completely determined the 7 functions of Okt = Oppr + 2M28(w — WX (W)X(w'Nw — w')270
the U sector and, at least in principle, solved all rele- x (W, w, w’)| (40)

vant physical problems of this sector. In the next sec-
tion the above 7 functions will be used to find the scatter-
ing and production amplitudes of this sector for the
Bronzan—-Lee model.

V. PRODUCTION AND SCATTERING AMPLITUDES
The V0 elastic scattering matrix is given by$
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W=mV+w :
From (36) we can evaluate S,,.,:

Spxr = Opper T 2786{w — W )X(w)X(w")

x g2 1+ (WA(w)
k@)1 — hr(w)A(w))

272
D(w + m)[1 — h{(wA(w)] |’
(41a)
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where D(x) is given by (27b) and
Alw)y=—1;, (). (41b)
For the production process V8 — N§'6", the production

amplitude is given by
Pexxn = 2120(my + w —my ~— @' — w” X(@X(w)X(w’)

!

X (my, + w—my — w — w)2TY

x (W, w,0,w”)

Y e (42)
Substitution of 7.V(W, w, w’, »”) from (38) yields
By ppn = 2100(my, + 0 —my — w0’ — w,,)_{(_(_u_))_)_((w_)XE__)

V3
x g23 ( 2
(@ w1 — hA(w)A(w)]

2y2h"(w) . (43)
(@@ D (w + m)[ 1 — h(WA(w)]

The scattering amplitude of the reverse process N9§’ —
V6 can also be easily computed.

The scattering amplitude corresponding to the N99' —

NG§”8" process is given by

Skk',k"k"' = %(6kk"6k'k’" + ékk"'ék'k")

+ 2mid{w + w — W' — "X (WX (W)X (W)X (w™)

XHw+ 0 — 0w — w2 W, w, v, w", »") Wyt
ZMN*(U"*U"'

(44)

Substituting the value TU(W, w, @', 0", ") from (39), we

get finally

Skk!'k"kln

= %(6kk" 6k' K + Gkk"' bk’k") - ﬂlé(w + w — w’— w"')
X g8 X(w)X(w)X(w")X(w"™)

<6kk" + Bpon
hH(w')

Orin + Oyrigm
ht(w)
WX (W)X (w )X (w")X(w™)
N gEhH{w+ @' —m)
)k w e {w"h (w1~ k(w + o — mA(w +w’ — m)]

% (yzh*(w,+ w —m) — Dlw+ w)
Dlw + w') )

X2w) + X‘z(w’))

-~ 271 §(w + @ — w” —

(45)

Thus we see that the first term of expression (45), in-
volving the Kronecker deltas, gives no scattering. The
second term, with the first bracket, corresponds to
scattering where one 6 in the process is unscattered

and the other g particle is scattered in the N source.

The last term, involving g4, corresponds to N§6’ scatter-
ing where both g particles interact with N particles.

VI. CONCLUDING REMARKS

We have seen that the LSZ technique can be used
straightforwardly to calculate all the 7 function in the
two lowest sectors of the Bronzan—Lee model. The case
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is similar to the V& and VV sectors of the usual Lee
model so far as the mathematical complexity is con-
cerned. The most important difference between the con-
ventional Lee model and the Bronzan-Lee model is the
fact that in the latter, vertex function renormalization
has to be carried out at every point of the Feynman dia-
gram where a U particle is absorbed or gives rise to a
V and ¢ pair. The comparison between the V6 and VV
sectors of the Lee model and the U sector of the
Bronzan—Lee model can be best made if we compare the
Feynman diagrams of the physical processes of the
sectors in question. We choose the N99' — N§"8" pro-
cess of the U sector of the Bronzan~-Lee model and
N§9’ scattering of the Lee model. Mathematically identi-
cal problems also arise from the 2N 66’ — 2N6"9" pro-
cess of the VV sector. If we look at the processes as
shown in Figs. 1-3, we note that for the N§8' —» N§"6"
or 2N96’ — 2N§”6" process the second-order diagram
is essentially the same in all three tases. But if we go
over to the fourth-order diagram all processes are dis-
tinctly different. All these processes have one diagram
in common, which is equivalent to N9¢’' scattering in V8
sector of ordinary Lee model. Fortunately, although the
processes are different, they give rise to the same kind
of integral equation and allow us to solve the problem
straightforwardly. Looking at Fig. 1, we see that in the
Bronzan-Lee model we must have terms proportional to
g#'g#. Indeed, such terms exist in Eq.(45). Also we
note that the function 2*(w) is the reciprocal of the V-
particle propagator in contrast to the VN propagator in
the VV sector. The function D(x) is more involved and
is related to the U particle propagator by Eq. (27a).

FIG.1. N68’ scattering diagram of the Bronzan-Lee model.
N [
- ] -7 S «
= - QI— - + < e 6"
-t T —9—’ _____ e_m_
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FIG.2. N86’ scattering diagram in the normal Lee model.
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FIG.3. 2NG66’ scattering in the normal Lee model.
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The Bronzan—Lee model can also be used to study the
possibility of the existence of other bound states in the
U sector. In particular, we can investigate the possibility
of the existence of complex poles of the expression (26).
Recently, Lee and Wick!6 introduced states with negative
norm to eliminate divergent quantities from quantum
electrodynamics, They suggested certain techniques to
carry out contour integrations which come up in the
evaluation of the Feynman graphs. They showed how
their ideas work in the Lee model. It is possible to
investigate how such procedures fit into the Bronzan—~
Lee model by slightly modifying it. Particularly, in our
opinion the assumption that all states which are com-
posed of positive and negative norm states form a com-
plete set should be investigated more closely.
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Neutron transport equations with spin-orbit coupling*
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An ab initio derivation of the transport equations is given for fast neutrons traversing a material having
spin zero nuclei. The resulting sct of equations agrees with the equations of Bell and Goad except for
the treatment of the coherent terms. Application of the equations to asymmetric situations is suggested.

1. INTRODUCTION

In this article, an ab initio derivation of the transport
equations will be given for fast neutrons scattered by
a material having spin-0 nuclei, taking account of the
spin-orbit interaction.

This problem was first pointed out by Wigner.1 So far,
it seems to have been dealt with only from a heuristic
standpoint.2 In this connection, however, Bell and Goad?
were able to show some immediate practical effects re-
sulting from the inclusion of spin-orbit coupling.

As in Ref. 2, it will be assumed that the neutrons do not
have sufficient energy to cause a significant amount of
nuclear excitation; on the other hand, it is assumed that
their energy is far greater than any atom's lattice bind-
ing energy.

In a general sense, one first needs to give an amplitude
description, i.e., a quantum mechanical description of
the multiple scattering;this is contained in Sec.2. Then
the transport equations are obtained in Sec.3 from
averaged expressions which are quadratic in the spin
amplitudes. The equations thus obtained, Egs. (3. 10) and
(8.13)-(3. 15), differ from those of Ref. 2 only in so far
as that the coherent contributions are properly included.

The formalism used stems mainly from Watson, 34

2. SCATTERING THEORY

The main concern of this section is in amending the
multiple scattering formalism so that spin is more ex-
plicitly taken into account,

To enable a nonspecialist to follow the gist of the deri-
vation, the more essential formulas of scattering theory
are given below, though often without detailed proofs when
they are readily available in Goldberger and Watson's
book.5

The total Hamiltonian will be expressed as

H=h+K,+V
=K+ V,

where the quantities %, K, and V are, respectively, the
Hamiltonian of the N nuclei, the kinetic energy operator
of the neutron and the interaction potential between the
neutron and all the nuclei. The eigenvalue problem asso-
ciated with the unperturbed situation,i.e., ¥V = 0, consists
of the solutions to

h¢'7 = W7(¢57 (2.1)
for the target, and
KiXp,u":erp,u (2.2)

for the neutron, with the eigenfunctions obeying approp-
riate boundary conditions. When the target is in the
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ground state ¥ = 0, ¢, will be a bound state. But when
y # 0,a recoiling nucleus may acquire sufficient energy
to require an outgoing (incoming) wave boundary condi-
tion on the corresponding wavefunction. The free neut-
ron's spinor function, in the coordinate representation,
will be

x‘;{’,, = (2n)3/2¢ilp-xly | (2.3)
where p is the initial momentum and v = * 1/2 the spin
eigenvalue label. The normalization for yx, , is

fd3xX;,UXq,u =08(p — q)aup‘ (2.4)
The spin eigenfunction u, is normalized, therefore,
according to

(uy,u“) = 6,“,.

The fundamental equation describing the complete prob-
lem is

Vi=xt G W,

where

(2.5)

G4 = (E £ in—K)1,

E is the total energy of the system,and 7 is the usual
infinitesimal used to assure an outgoing (incoming)
wave solution y*(y¥7), and

(x,Z, VI X[> = Xp,y(x)<z I ¢0>
= Xp, v %) ¢ (2)

= x; %, 2). (2.6)
In Eq. (2. 6) and subsequent thereto,x and z will always
refer, respectively, to the neutron and (totality of) nuc-
lear coordinates.

Now if
a=N

V=2, V, 2.7)
a=1
where here V, is the neutron-nucleus « interaction,
then there exists, according to Watson,5 a formal solu-
tion to Ea. (2. 5) given by
a=N

Vi=xt I Gt (2.8)
a=
with Y/, satisfying
B=N
Vo=xit 20 Gyt (2.9)
B(=a)=1
and
ty =Vot V.GV, (2.10)
with
G, =(E+in—K— V)1 2.11)
Copyright © 1973 by the American Institute of Physics 97
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The total amplitude of the exact solution to (2.5) con-
sists of an unattenuated amplitude x,(x, z) plus a super-
position of amplitudes for scatterings stemming in part
from x, (x, 2) as well as from rescattered waves. If the
attenuation in the target can be significant, then it is
much preferable to envision the amplitude y* made up
of an attenuated, coherent® wave y,, plus a superposition
of amplitudes describing the incoherent scattering.

Again an implicit, though exact, solution exists.5 If

Y= Fy,, (2.12)
then a=N
F =1+P,§ 2 t,F, (2.13)
a=1
and
B=N
F, =1+ Py§ tg Fy (2.14)
B(=a)=1
with
t, =V, + V.Gt (2.15)
and

9-1 = (GB)-I -0 ’

where U is the pseudopotential which depends on the
state of the target (medium) y and P, is the operator
which, in the iterative solution of Egs. (2.5) and (2.13)-
(2.15), prevents the recurrence of the initial state or
any other states of the target which have ever been a
bra or ket for any ¢{. For the present application
(where N — )

, a=N
VW) = VI =¢| % to Fo|7). (2.16)
a=1
The pseudopotential obeys the equation
§h.0 =Xp,0 T8VE} ., (2.17)

where

<x’z) 14 [q/c> = ép'y(x) (P()(z) (Spm 0)

and g is the unperturbed propagator (¢, + i — K,)™1.7

An essential simplification (the impulse approximation)
is made possible by the condition, mentioned in Sec. 1,
that the neutrons energy, say 1 MeV, is much greater
than the lattice binding energy of the individual target
atom. In this regime one may consider the individual
collions as practically free, and, thus, it becomes pos-
sible to replace t, by 7, which denotes the correspond-
ing free particle scattering matrix. The calculations
are much simplified because the 7, depend only on the
two coordinates x and z (in a coordinate representation)
instead of on all the coordinates, With

gc;= (e +in— Ki _Ka - Va)_l’ (2.18)

where ¢ is the energy of the neutron 7 plus nucleus «,

T, =V, + Vg V,. (2.19)

If y, = F ¥, ,then Egs, (2. 14) and (2. 15), using the im-
pulse approximation, take on the following form:

a=N

V=gt D ST, (2.20)
DL—ﬂ=N

Yo=¥o+ 27 ST,¥s. (2.21)
B(=a)=1

In Eqgs. (2. 20) and (2. 21) it has also been assumed that
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P, = 1 due to the enormous number of states of the tar-
get.

Next, it is necessary to calculate the typical amplitude
for a scattered wave from nucleus a, viz., first

U= (x,2, | GLT W), (2.22")
and then
U, =(x,2, 187w, (2.22)

asr:]x—zl—)oo,

In this connection, it is convenient to introduce the
operators T, to separate out the momentum conserving
property of the 7,,. Let the neutron have momenta p and
% and the nucleus momenta P and @, respectively, before
and after the collision. Then

(k,QlT,|p,P)=0(k+Q—p—PXEQIT,|p,P).
(2.23)

The dependence of 7, and T, on spin of the neutrons v
is still suppressed. Finally, the positional dependence of
7, on z, can be separated out to the following extent:

T, = e #%aT,
where
p=Ek—p

is the neutron's momentum transfer; 7' is an operator
with respect to z through P = vV, as given in
a

(k,P—p|T,|p,P)=T.

But this z , dependence exists only if terms of the order
of magnitude of the ratio of final nucleon to neutron
velocity are considered.5 Such terms will be ignored
here and hence T, hereafter, will be considered not to
depend on 2.

For the unperturbed amplitude (I = {p,y = 0})
_ eiﬂ'x

XI,ll - (2‘”)3/2

the scattered amplitude is

(2.24)

U, ¢0(Z),

(x,2, V| GBTaXIu>

- .0 . - Sy 0
= (2n) 3/2(e;k Ra/Ra) eng(za zQ) ez@.za)fyluqbo(z%). |
2.25

In the last equation R, = |x — 29 |, where 29 is the loca-
tion of the nucleus a before the collision; Q0 and k° are,
respectively, @, and & for P = 0. f,,,, is defined by

Syrww=—(2m)20uT,,,.(v,/BV)F. (2.26)
The matrix elements of the proper scattering amplitude
consists of only — (27)2uT,,, , where u is the reduced
mass; (v, /Av); denotes the ratio of the neutron velocity
to the relative velocity of neutron and nucleus, both cal-
culated after the collision.

To find @&,w stemming from ¢ ,, [see Egs. (2.22")
and (2. 25)] requires taking

;L(:t.u' = E f<x’2, v | GBTaXPI_y//> %ﬁ,u" (p’)dBp"
u (2.27)
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where

el'P'X

! (. 2).
(21)3/2 =T (2. 28)
If it is now assumed, quite realistically,that each scat-

tering is an isolatable event,then (for spin-0 nuclei)
the ansatz

(x,z,v|¢)) L (phasp' =

Ve, (P")
1 BZ)N (") pof H 0. )
= ‘pﬂou p ¢Ozl...z ceegPeeezy
/ 20)=0
(27)3/2 go) (2.29)

with
%0,,,(9’) =6{(p—p)u,,

which is in harmony with the result of Eq. (2. 25), per-
mits one to interpret Y, , as the amplitude for scatter-
ing of neutrons, with spin along (opposite) to the quanti-
zation d1rect10n, from nucleus o toward nucleus 8. For
the ({x,2’|) “bracket” version of Eq.(2.9),using an-
satz (2.29) one obtains

L w,2) = xp ) 00(2) + Yicare (2. 30)

with
Vicare = (@m)73/2 ?f ﬂ(*%) 1 o(xze;q Easo Jyui(@P, B0)
X Vo, yo ) Polzyr 228,029, -),

where
Who,,06) = (20)3/2 [aspryy, ,(p"),
Ry Epo = expli[RyRog — g (25— 28)11, (2.31)
fuui (@B, BOY = f,,, (Ryg,7g,),
and, in turn,
Ry =122—-201,
Pop = kp—kgofige, B=0 (2.32)

(2§ —29)/128 — 281, B=p/Ipl,

i.e.,p, is the difference between the neutrons momen-
tum after the collision (near z a)k and the correspond-
ing quantity before collision. For o =0, pgq =k, —p
and f(apB, B0) = f(n,5,P).

A second equation for y,, ,(x,2z) stems from the Fourier
transform of Eq. (2. 29). It is

Rgo

Voo (%, 2) = Xp,, (%) $o(22, 2") + (2m)73/2
B=N
x MEH Wip, () 90(29, -+ +2Q+++2,), (2.33)

where 2’ denotes all z, with v # «.

Now is ig possible to ehmma.te the ¢, which so far
appear with different arguments z and z° so that only
an equation for /g , remains, This is achieved by first
setting in Egs. (2. 30) and (2.31),x = 2%,and 2z, = 20 for
all the 2/ referring to sites where no collision took
place. The two resulting expressions for ¥ , (29, 20)
are then equated, yielding

(;B'» E ( BOfuul(aB ﬁO)XP'W(z )
O=N
* (’% 1 Eaﬂc’f""'(aﬁ’ﬁo)‘%o,w(zg»- (2.34")
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Equation (2. 34’) represents a major simplification of
the multiple scattering equations because it consists
only of linear algebraic equations.

Before proceeding to the transport equations, however,
it is preferable, as has already been indicated, to make
use of a separation into coherent and incoherent
waves,5 i.e.,to work with Eqgs. (2. 20) and (2. 21) and
their consequences, instead of Eqgs. (2. 8) and (2. 9) (with
t, replaced by 7).

Formally, the attendant changes are simple. For a
parity conserving interaction, which is the case here,
U has no spin dependence; for a uniform medium as is
considered here U is a complex constant. Hence in
going from G} to § [see Eq. (2. 16)], in the process of
changing from a Y , to a y, , description, one usually
introduces a complex refractive index n

n2 = 1—(‘0/€k8). (2.35)
According to Eq.(2.17), §, , may,therefore,be ex-
pressed as

gp'y(x) = ‘Ep,y(o) etlap D) +p(x-D)] , (2. 36)
where £, ,(0) is the spinor amplitude outside the medium,
which is normahzed such that

1€5,1/2 @12 +1&, 4,,0)]2=1,

and D(x) is the distance of x into the medium, as mea-
sured along a line through x and parallel to »,

According to Egs. (2. 20) and (2. 21), one change in Eq.
(2.34), below, which is the y,, ,(29) counterpart of Eq.
(2 34'),1is the replacement of x,, ,,(x) [see Eq.(2.3)] by

,(*¥). A second change mvolves the replacement of
EZBO by E_p,, which according to Eqgs. (2. 25), and (2. 31)
are related to each other by

aBo /Eaﬂa) e exp[zkﬁ(n - l)Raﬂ]

Consequently,

‘PQB u(zo) - E( ﬁofuul(aB BO) ‘Ep,y/(zg)
c=N

+ 2

o(=p)=1
3. TRANSPORT EQUATIONS

The local neutron density is commonly the dependent
variable of the transport equations. Consequently, equa-
tions in variables quadratic in £, , and y_, , (and the
complex conjugates) will be sought here. The variables
used are8-10

E 50 fuu (@B, BO) Wgo ,,(23)). (2.34)

N9 = D &) ,0)08,¢,,, @),
"inc(z'a’};)dQ; = 52’2 Iwaﬂ.v(zg)lzy

) (29,

inc

(3.1)

k)dQ; = L;‘/, E w;ﬂ.u(z?x)oé'f/)/ af,v’ (Zg).
vy’

The “c” and “inc” subscripts are attached, respectively,

to quantities associated with coherent and incoherent

processes. Thus,n_ is the number of particles per unit
volume which have not undergone a (quasi-free) scatter-

ing, and II(J) is the jth component of their polarization

per unit volume Outside the scatterer, the wave vector
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of the neutrons was p. Inside the scatterer consider a
point 2z, and neutrons arriving there, directed along k
i.e., arr1v1ng in a infinitesimal solid angle a,, whose
axis is — k. Thusan,,.(29 ,k) gives the number of neut-
rons per unit volume and per unit solid angle (along — &)
who have undergone at least one nuclear scattering;

13 (29, k) is the jth component of the polarization per
unit volume and per unit solid angle of these neutrons,

Finally, 044 in Eq. (3. 1) is the jth Pauli spin matrix,
which obeys
20 0l8 ol = de

vyt Yuun

(k)
ijk Gy + 6ij Guw/ .

(3.2)

The total neutron density at x per unit solid angle is,
therefore,

n(x, k) =n,0(k,p) +n, o&,E) (3.3)
with

(2m)31, = exp[— D(x)/A],

where A is the mean free path for scattering given by
Eq.(3.6) and 6(k p) is a directional 6 function, such that
for any function F(k) to be used

[ 6(8,p)F(k)ds; = F(P).
Corresponding to (3. 3), there will also be defined the
total polarization per unit volume and solid angle accord-
ing to

0 (v, k) = 1Y (¥) 6(k, p) + N, (x, k),

inc

(3.4)
where, according to Eq. (2. 36),

I, (x) = [4(0) e P&/ X |
In order to treat the spin—orbit coupling explicitly, the
spin matrix elements of the effective scattering ampli-
tude [see Eq. (2. 26)] is customarily written5

Fuulls0) = g8, + ih(owu)
where ¥ = # sing = (p A k), and the newly introduced
(complex) g and k are given functions of (%, ) and ener-
gy €,. If h = 0, then, of course,there is no spin-orbit
1nteract1on

The derivation of the transport equations is now at hand.
The first integral equation, the one that will remain
even if the spin orbit coupling is omitted, is obtained by
computing 7, . d2 from Eq. (2. 34) and its complex con~
jugate version. Thus

II,J,

ninc(zgrg)dﬂk = E’raﬁ{z ’ [gg.v(zg)
B v/
x 082 (apB,BO)E, ,(25)

+ 20 U, (29 088 (aB, BO) Yy, (2D} (3.9)

since the ¥, , do not interfere with the £, , and (in this
energy range) with the ¥4, ,. In Eq.(3.5)

raﬁ = |Eaﬂo [2 =€ RaB/A/RaB
where

1/2x = Im(nk,). (3.6)
Moreover

ol = Efu,u Cob,,, +Ci(0-n),,, 3.7
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with
Co
and
C,y

i

lg12 + |n|2 sin26

i(hg™ — gh™) sing,

It should be noted that these C are functions of E=n B s
B =g,, and lkg |.

The first term on the right-hand side of Eq. (3.5) is the
density of particles moving in the direction k as a re—
sult of undergoing their first collision at a certain zE 3
similarly the second term gives the contribution to
then . (29, E)asa result of undergoing not their first
collision at a certain 2 3 ,having previously traveled

along I;’, i.e., been confined to a dQ3..

Next Eq. (3. 5) will be turned into an integral equation
by converting the 8 and ¢ sums to integrals. According
to (3.1) and (3.7)

E E Wﬁouon

HAT
vyt o
= [aeg[Colk, Bl + Cy (R, ) (I, .- &),
where
w=knk/| AR

(3.8)

primes onn;, . and 11, . indicate that they are evalua-
ted at a space point 20 = x’ = z° = x. The sum over 3
can be written

(1/d23) §'< )= [( )pR2dR,

where R = |29 — 29| and p(x’) is the particle density
of atoms (nuclei). By using the substitutions (3. 8) and
(3.9), together with Eqgs. (3. 3) and (3.4), Eq. (3. 5) with
29 = x becomes finally

(3.9)

n(x, k) = n,(x) 6(k,p)
+ J dr [dQup e R/ pR + x)

X [Coll, B )n' (x', k') + C (R, k') (u' - 1I")]. (3.10)
This is the first of four integral equations in~ and II.

In Eq. (3. 10) the first term is the contribution from
particles which have not been scattered. The second
gives the number of neutrons scattered into the (x, &)
element. Equation (3.10) is an integral equation inn

and IT; hence, to complete the system of equations,

dQ will be calculated, analogously to Eq. (3. 5).

1nc

From Egs.(3.1) and (2. 34) one obtains
ZB>' FaB[VZU;,I EZ,U 015‘];1' gp,,,
+ E wﬁ*o,uolsll;[l) wﬁo,ul] (3' 11)
(o
with the functions on the right-hand side of Eq.(3.11)

depending on the same variables as the corresponding
functions in Eq. (3. 5). However,

Olwn=2

v/

H(])

inc

(29,k)dQ; =

yylll uyl vryn

or

O = [Cya — Co@' A ) + Coy(u’ A (@ A G)) + C 0[]
with (3.12)

C, =+ (hg* + gh™) sing,

C; =2[h|2 sin26,
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I being the unit matrix of two dimensions.
Using, as before, Eqs. (3. 1), (3. 6), (3.9), (3.11), and
(3.12), one finds
Mite, %) = [1(x, k) Bk, )
+ dep(R + x)e ®/A
x [dQp[Cyun’ + Coll" — Co(@! A TI')

+ C ' A @ AT (3.13)

The three equations (3. 13), plus Eq. (3. 10), form the
complete set of transport equations which were sought.

The first term in Eq. (3.13) is the contribution to the
polarization density of neutrons from neutrons which
have not been scattered; the second term gives the cor-
responding contribution of neutrons scattered into the
(x,7e) element.

If Egs. (3.10) and (3.13) are differentiated with respect
to x in the direction %, one obtains

2 9 A 20 *A__n(x,ﬁ)
k a—n(x,k)—k a—x-nc(x)é(k,p)_ =

+ [ pdseg, [Colk, B )nix, B) + Cy (B, B w - Ti(x, "))
(3.14)

~ oIl ~ oIl ~ ~ I
k- . £ 8k = — — 4+ dl s, [Coll
o o (&, p) Y fp k[ 0

+C = Co A ) + Cy@'n A’ AID]. (3.15)
which is the more common form of writing the trans-
port equations.

With the exception of the coherent terms, which are
needed to describe the contribution from neutrons
which have not been scattered, Eqs. (3. 14) and (3. 15)
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are equivalent to their counterparts of Ref. 2.

Methods for solving the transport equations, for special
symmetries, are given in Ref. 2. Because of the pre-
sence of left-right asymmetries in scattering involving
spin-orbit coupling, it should be more interesting to in-
vestigate the influence of spin-orbit coupling on neutron
transportin asymmetric situations. This would generally
require extensive numerical work, but it ought to give
rise to more significant manifestations of spin-orbit
coupling.
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It is shown how, from the invariance of Maxwell's equations under the complex Poincaré group, new
solutions can be obtained from already known ones. The technique is illustrated with the Coulomb
solution. If the same ideas are applied to the linearized Einstein-Maxwell equations a simple classical
“derivation” of the Dirac value of the gyromagnetic ratio is obtained.

I. INTRODUCTION

It is the purpose of this note to show that one can obtain
new solutions of Maxwell's equations by considering
their extension info complex Minkowski space and their
consequent invariance under the complex Poincaré
group.

In the second section {using the complex 3-vector

E + (B as the basic field variable), we show how new
solutions may be obtained by a complex translation and
then illustrate the technique with the Coulomb figld.

In Sec. Il {using the self-dual bivector Fr¥ + {F¥? as
the basic field variable), we show the invariance of
Maxwell's equations under the ten (complex) parameter
Poincaré group and how new solutions may be obtained.
Finally, in the last section we point out that the ideas
used here can be applied to many Lorentz invariant
fields. In particular, this applied to both the spin-1 and
spin-2, rest-mass zero fields yields a classical “ex-
planation” for the Dirac value of the gyromagnetic
ratio,

1l. COMPLEX TRANSLATIONS

It is well known?! that Maxwell's equations can be writ-
ten in the form
curlW = /W, divw =0, {1}
where W = E + i{B. We consider the extension of this
equation into complex Minkowski space by allowing the
coordinates z* = {x,v, z, {) to take on complex values.
(Solutions are now to be holomorphic functions of z#.)
It is clear that any solution W, of these complexified
equations will yield a solution of the real Maxwell equa-
tions by restricting the coordinates to the real domain
and then taking the real and imaginary parts W to be E
and B. Furthermore, it is also clear that given a sclu-
tion W(z#), then Wy{z#) = W{z# — b#) is also a solution.
If 6% is real then the “new” real solution is the “old”
one with simply a shift of the origin of real Minkowski
space, If b* is however complex, the new real solution
is fundamentally different from the original.

We illustrate the procedure with the Coulomb field.
Since B = 0, W = (e3/73){x,y,2), where 7 = (x? + 32 +
22)1/2, By a shift in the origin in the complex z direc-
tion we obtain W, = (e/7;3)(x,y,2 — ia), where vy =

[x2 + 92 + (z —ia)2]1/2,

The E and B obtained from the real and imaginary parts
of W, has a multipole expansion of the form, eleciric
monopole moment {¢), magnetic dipole moment (ea),
eleclric quadrupole moment (ea2), magnetic octupole, etc.
This field is already well known,?2 it being the electro-
magnetic part of the charged Kerr solution of the
Einstein-Maxwell equations,
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i11. COMPLEX HOMOGENEOUS TRANSFORMATIONS

The invariance of Maxwell's equations under the com-
plex homogeneous Lorentz group is easily demonstrated
by writing the covariant form of Maxwell's equations as

W“u,u =0, (2)

*
where Wi¥ = FuV + {FiY and the coordinates are com-~
plex. A complex Lorentz transformation (z'* = az?,
with complex a{ satisfying afagn pv =17 ) acting on
Wev(Wey = asalWe®) obviously leaves f‘f 1) invariant,
A new solution of the real Maxwell equations is obtain~
ed by restricting the coordinates (in W&;w") to real values
and then taking the real part of W4v.

A complex boost applied to the Coulomb solution yields
a time dependent solution with the following structure;
an electric monopole, a magnetic dipole with linear
time dependence, an electrvic quadrupole with quadratic
time dependence, etc.

V. DISCUSSION

The ideas discussed in the preceding sections appear to
be generalizable to most noninteracting Lorentz in-
variant fields. (When interactions are involved, difficul~
ties arise in the complexification of the potentials.) They
certainly apply to the noninteracting rest-mass zero
fields,

In particular if the translation in the complex z direc~
tion is applied to the monopole solution of the spin-2,
rest-mass zero field (i.e., to the linearized version

of the Schwarzschild solution of the Einstein equationg),
a new solution is obtained (the linearized Kerr34 solu-
tion). (We emphasize that the complexification is on
the Weyl tensor and not on the metric.) This solution
has the following source structure: mass monopole
moment {m), spin angular momentum (ma), mass quad-
rupole moment (ma?}, spin octupole moment (ma3), ete,

[This solution, combined with the complex displaced
Coulomb solution {Sec, IT) of Maxwell's equations, is
the linearized version of the charged Kerr solution?®
of the Einstein-Maxwell equations.]

It is interesting to note that if we begin with the mono-
pole solutions of the spin-1 and spin-2 equations and
perform the same complex translation on them, the new
solutions have, respectively, a magnetic moment and
angular momentum for their sources. The gyromagne-
tic ratio is independent of the translation parameter
and is precisely (¢/m), (g = 2) the Dirac value,.

It is not at all clear whether this classical “prediction”
of the Dirac gyromagnetic ratio (or any of the material
of this paper) is nothing but a mathematical exercise or
if it has deeper physical meaning. We nevertheless
wish to point out that in recent years complex Minkow-
ski space has been playing an increasingly important
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role in both particle physics® and in relativity (the
Penrose theory of twistors).67

Lastly, we mention that though we have here used the
source-free Maxwell equations, the work described
could be generalized to include sources.
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The Schwarzchild manifold of general relativity theory is unsatisfactory as a particle model because the
singularity at the origin makes it geodesically incomplete. A coupling of the geometry of space—time to a
scalar field ¢ produces in its stead a static, spherically symmetric, geodesically complete, horizonless
space-time manifold with a topological hole, termed a drainhole, in its center. The coupling is

R,.,=2¢ ,¢,; its polarity is reversed from the usual to allow both the negative curvatures found in the
drainhole and the completeness of the geodesics. The scalar field satisfies the scalar wave equation

¢ =0 and has finite total energy whose magnitude, expressed as a length, is comparable to the

drainhole radius. On one side of the drainhole the manifold is asymptotic to a Schwarzschild manifold
with positive mass parameter m, on the other 1o a Schwarzschild manifold with negative mass
parameter #i, and —m > m. The two-sided particle thus modeled attracts matter on the one side and,
with greater strength, repels it on the other. If m is one proton mass, then —m/m ~14+10""° or
1+107%, according as the drainhole radius is close to 10~ *cm or close to 10—' ¢m; the ratios of total
scalar field energy to m in these instances are 10'° and 10%. A radially directed vector field which
presents itself is interpreted, for purposes of conceptualization, as the velocity of a flowing “‘substantial
ether” whose nonrigid motions manifest themselves as gravitational phenomena. When the ether is at

rest, the two-sided particle has no mass on either side, but the drainhole remains open and is able to
trap test particles for any finite length of time, then release them without ever accelerating them; some it
can trap for all time without accelerating them. This massless, chargeless, spinless particle can, if
disturbed, dematerialize into a scalar-field wave propagating at the wave speed characteristic of the

space~time manifold.

. INTRODUCTION

Ever since Schwarzschild presented his spherically
symmetric solution of the Einstein vacuum gravitational
field equations,? it has been a common practice to think
of space-time manifolds with “point singularities” as
the most appropriate models for mass particles within
general relativity theory. Such manifolds, however, are
unsatisfactory as models because they are not geodesi-
cally complete, failing to provide complete histories for
test particles and light rays that encounter the singulari-
ties. Einstein and Rosen attempted to do away with the
Schwarzschild point singularity by connecting together
two Schwarzschild exteriors by a “bridge” at the
Schwarzschild horizon.2 They hoped by thus picturing
elementary particles as topological holes in space to
explain the atomistic character of matter. They also
held out the possibility of explaining quantum phenomena
in the same way. The manifold that they constructed,
however, not only carried a degenerate metric, which
they were prepared to accept, it also suffered the defect
of being geodesically incomplete. In cutting away the
Schwarzschild interiors they had taken portions of geo-~
desics whose remaining parts they had not subsequently
pieced out to completeness.

In more recent times Kruskal has shown,3 and Fronsdal
independently has shown,4 that the maximal analytic
extension of the Schwarzschild manifold has in it a hole,
associated with the Schwarzschild horizon, that is topo-
logically but not metrically like the hole in the Einstein-
Rosen manifold. This hole Wheeler has termed a
““wormhole’’5; it connects the two Schwarzschild
exteriors found in the maximal analytic extension. Some
of the geodesics that in the Schwarzschild manifold ter-
minate abruptly at the horizon are, in the maximal ex-
tension, completed through the wormhole. However,
there are others in the extended manifold that arrive at
one of its two point singularities without having exhaust~
ed their affine parameters. Hence the maximal analytic
extension is geodesically incomplete because of the
point singularities.
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To get a geodesically complete space-time manifold
with a hole in it by which to represent a mass particle,
one must find a way to force open the Schwarzschild
singularity and there to connect on an additional chunk
of space~time, taking care to preserve those features
of the original manifold that bring it into agreement
with the observable properties of the mass particle.
The main object of this writing is to show how that may
be done. The hole that replaces the singularity will
differ in important respects from the Einsten-Rosen
bridge and from the Kruskal-Fronsdal wormhole. At
the risk of superadding coinage I shall refer to this hole
as a ‘‘drainhole.”” The rationale for this name is that on
the space-time manifold containing the hole there is a
vector field that can be interpreted as a velocity field
for an ‘‘ether’’ draining through the hole. The existence
of the hole permits this ether to be conserved in the
sense that its streamlines, which are timelike geodesics,
never abruptly terminate. It is intriguing that the mani-
folds that contain one of these drainholes have among
them not only reasonable models of mass particles,

but also novel models of massless particles with the
ability to hold test particles in close orbit for arbitrary
lengths of time without accelerating them. These par-
ticles, both the massive and the massless, could serve
as nuclear glue.

It is clear that these drainhole manifolds, if spheri-
cally symmetric, cannot satisfy Einstein's vacuum

field equations. Indeed, according to a theorem of Birk-
hoff, the only spherically symmetric space-time mani-
fold that does so is Schwarzschild's.® A ‘“plumber's
friend’’ is needed to open up the Schwarzschild singu-
larity with. The device that will be used is a scalar
field. This field ¢ will satisfy the scalar wave equa-
tion ¢ = 0 and will be coupled to the metric of the
space—time manifold through the field equations

R,, =2¢,¢,,the R, being the components of the Ricci
tensor field. The polarity of the coupling, which is oppo-
site to the customarily accepted polarity, will be seen to
be fixed by the requirement that these field equations
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have a static, spherically symmetric, and geodesically
complete solution manifold.

It will be convenient to begin with a discussion of a
generalized drainhole line element and the geometrical
and physical entities that can be associated with it,
without at first imposing the field equations (Secs.II-
V). After an argument to motivate the choice of field
equations (Sec. V1), there will come a description of all
their solution manifolds that carry such a line element
(Sec. VII), a proof that some of these manifolds are
geodesically complete and a description of their geo-
desics (Sec. VIII), and a final discussion, devoted mainly
to the choice of coupling polarity in the field equations
and including a proof that every static and spherically
symmetric line element can be brought into the adopted
form (Sec.IX). The computational framework to be used
will be found outlined in the Appendix.

If. THE DRAINHOLE LINE ELEMENT

When referred to a certain nicely adapted coordinate
system, the general line element in question takes the
spherically symmetric form

dr2 =dt2 — [dp — f(p)dt]2 — r2(p)[ds2 + (sin $)2dg?]
=dt2 — [dp — f(p)dt]2 — r2(p)dQ2. (1)

The function f and the nonnegative function v are to be
determined by the field equations. The coordinate
ranges are given by

—w<i{<o, —o<p<o 0<s<m, — 7L< 7w, (2)

and the additional stipulation that p e dmnf N dmn7 —
¥~1(0). The determinant of the metric tensor in this
coordinate system is — [¥2(p) sin 4]2; it is, as a result,
independent of f. Because »~1(0) is excluded from the
range of p, the line element is regular for all values of
the coordinates.

Once the functions f and » have been specified, the line
element may be considered to lie upon a manifold M
that is almost globally coordinatized by the coordinate
system [t,p, #, ¢ ], the points without coordinates being
those at which lim inf 7{p) = 0,lim 4 = 0 or 7, or lim ¢
=t 7. Because the metric coefficients in Eq. (1) are
independent of £, all translations of M along the ¢ coor-
dinate curves are isometries; hence 3 /3¢ is a Killing
vector field. Inasmuch as [3/0¢12 =1 — 2, 3/8t is
timelike, null, or spacelike according as f2 <1, f2 =1,
or f2 > 1, Consequently, those regions of 9N where /2 <
1 are stationary. Because 2f(p)dpdt is the only cross
term in M’s line element, 3/9¢ is not everywhere orthog-
onal to the hypersurfaces of constant ¢ unless f = 0,

in which event 9 is static. Actually, N is static wher-
ever f2 < 1, This is established in Sec.V, where it

is shown that 3/d¢ is orthogonal to other hypersurfaces.

Let Z, denote the cross section of M on which the time
coordinate has the constant value £.7 3, is spacelike
and inherits from M the Riemannian line element given
by

do2 =dp2 + r2(p)dn2. 3)
If it were the case that »(p) = p, then this would be the

line element of Euclidean 3-space E3, cast in polar
coordinates p,4,and ¢. In the general case Z, may be
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thought of as a warped portion of E3, The warping,
caused by deviations of 7(p) from the Euclidean value

p, does not destroy the spherical symmetry. The cross
section S, , on which the radial coordinate has the con-
stant value p is simply a geometrical 2-sphere of radius
v(p). If v(p) has a positive minimum value, then %, has
a central hole of that radius, it being the radius of the
smallest such 2-sphere S, ; in Z,.

A case that will arise later has »(p) = (p2 +n2)1/2,
where » is a positive constant and is the radius of the
hole, a particular instance of the drainhole. In this case
the equatorial cross section of Z,, typical of all great-
circle cross sections of Z,, may be pictured as in Fig. 1.
It is isometrically embeddable in E3 as {[x,y,2]| (x2 +
92)1/2 = » cosh(z/n)}, a catenoid. Z, itself is congruent
to {[x,y,z,w]l (x2 +y2 +22)V/2 = cosh(w/n)} in E4.

Z, is asymptotic to E3, in a sense that can be made pre-
cise, both as p » © and as p - — «, This is primarily
because, in each instance, lim[r(p)/|p|] = 1.

I1l. THE ETHER FLOW
The vector field # on the manifold I, defined by

u=g +7(0) 55 @

has many interesting properties. To begin with, it is
everywhere timelike, of unit length, and orthogonal to a
cross section Z,. Thus it may serve as the timelike vec-
tor field in an orthonormal frame system whose space-
like vector fields are tangent to these hypersurfaces

Z,;. One such frame system is {e“} defined as follows:

0 d d
g=u=—+f(p)—, ¢ =—
0 ot T e’
ol B .o 1 2
27 y(p) 88’ ¥(p)sin ¢ a<p' (5)

The system coframe {w*} dual to {e,} is given by
w0 =df, wl =dp— f(p)dt,

w2 =r(p)ds, w3 =7(p)(sins)dyp. (6)
Determining the unique torsion-free covariant differen-
tiation d that is consistent with the metric is made easy

by the use of this orthonormal frame system. The con-
nection forms are found to be expressed by3

FIG. 1.
tion Z, of the space—time manifold N in a special case. The line ele-
ment of this surface is given by do2 = dp2 + (p2 + n2)dg?. The sur-
face is isometric to the catenoid {[x,y,2]l(x2 +y2)1/2 = » cosh(z/2)}
in E3, The radius of the central hole, where p = 0, is ». The surface
is asymptotic to EZ,bothas p & ®» and as p = — w.

The equatorial cross section of the typical spatial cross sec-
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[T
I 0 flwl r'/r)fw? o' /r)fw3 ]
flwl 0 r'/rw2 ' /r)w3
[O)K“] = (M
o’ /r)fw2|—'/r)w2| 0 [(ctns)/7 w3
| O'/1)fed =t /r)wd| — [(etnd)/r]wd | 0

Because u = ¢,

du =f'(wl® e) + '/r)f(w2® e, + W3R ¢) (8)
and
duu = f'(wlegle; + o' /7)f[w2epley + (w3ey)ey] = 0.
(9

Another property of the vector field # now becomes
apparent: each of its integral paths is geodesic. If
b is an integral path of #, then

b =u(p) = ¢y(p); (10)
hence

b = du(p)p = (duu)(p) = 0. (11)
Thus p is geodesic and is parametrized by an affine
parameter, which is, because {$|2 = |u(p)|2 = 1, the
proper time along p measured from some initial point.
Therefore,u generates a congruence of timelike geodes-
ics parametrized by proper time, filling up the space-
time manifold M.

In attempting to understand gravity, I have found it
useful to accept as a working hypothesis the existence
of a more or less substantial ‘‘ether,”” pervading all of
space—-time. The ether that I imagine is more than a
mere inert medium for the propagation of electromag-
netic waves; it is a restless, flowing continuum whose
internal, relative motions manifest themselves to us as
gravity. Mass particles appear as sinks or sources of
this flowing ether. In the case of the space—time mani-
fold M under discussion here the velocity that I asso-
ciate with the ether flow is the vector field #. The geo-
desic property of # just now established I interpret as
saying that every observer or test particle drifting with
the ether, following its flow, is absolutely unaccelerated.
In this sense my hypothetical ether provides a universal
system of inertial observers, just as did the nineteenth-
century luminiferous ether, and as must every ether
worthy of the name.

It was in pursuing the consequences of this hypothesis
that I became convinced of the need to replace the
Schwarzschild singularity with a drainhole. Telling how
to do that is the principal aim here, and I shall therefore
make no effort to justify the ether-flow hypothesis,?.10
Although henceforth I shall refer to« as ‘‘the ether flow
velocity” and speak of “the ether” as if it really does
exist and flow about, I shall do so not because I expect
the reader to adopt this hypothesis, rather because the
concepts and terminology provide an expressive and
stimulating vehicle of thought that I am accustomed to
using. Whether there is such an ether is a question that
requires clarification if it is to be answered with
confidence.

Returning now to the discussion of geodesics associated
with the ether flow velocity #, let us first note that if p
is any path in the manifold 9, then, in terms of the ortho-
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" normal frame system {e.t,

b =tey(p) + [p — f(p)iley (D)
+7(p)sey(p) +7(p)(sins)dey(p), (12)

where by abuse of notation ¢,p, ¢, and ¢ stand for (p),
p(p), #(p), and ¢ (p). If the path p is that of an observer
drifting with the ether, parametrized by his proper time,
then Eq. (12) must agree with Eq. (10). Therefore 3=

¢ = 0, meaning that the drift is radial. Further,! =1,
which says that coordinate time elapses at the same

rate as the proper time of the drifting observer. Finally,
p =f(p), and it then follows that the coordinate 3-velo-
city of the drifting ether is f(p)d/9p, and that the coor-
dinate 3-speed is |f(p)!.

For the discussion of horizons in Sec.V it will be re-
required that a little about the paths of light rays be
known. If p is any null path, then from Eq. (12) it follows
that

(2 - sp2)2 +r2o3)* = 1,

unless { = 0, in which case also;') =8 = @ =0andp is
not a path of a light ray. Inasmuch as the relative coor-
dinate 3-velocity of the path p with respect to the ether
flow is

(13)

(%p—f(p)) )+ W +E e, 19

the import of Eq. (13) is that the square of the speed of
light with respect to the ether, as measured in the coor-
dinate system [¢,p,4,¢],is 1.

Each of the vector fields u + 2/0p generates a congruence
of null geodesics, for if

b=uld) 35 (9)

(15)
= eo(p) + e]_(p):
then p is null, and, in view of Eq. (7),
b = deg(p)h + de,(p)p
= (degey t dege, * deye, + deye)(p) (16)

=fp.

The coordinate 3-velocities of the null geodesics in
these two congruences, and their coordinate 3-veloci-
ties with respect to the ether flow, are, respectively,

a7

[fp)£1]2/3p and + 3/dp.
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Light rays following these paths are moving in the radial
direction if they are moving at all. Those in one group
move upstream in the ether, and those in the other group
go downstream.

IV. THE CURVATURE TENSOR FIELDS

It is a simple matter to calculate the curvature forms
© ¢ from the formulas (7) for the connection forms

4w . The result is that
g
k[0 + + + ]
l
2\
(Z—) (wOA wl) 0 - -
2
(TZ)'f (wo/\ w2> —7;,—”_7’(&)0/\ wz)
[e‘(”] = yrr ¥! fz ’ 34 0 - (18)
r- YIIZY X M1 2
+ f(ll\ w2> +[7(2) T](w Aw)
(1"f)’f (wol\ w) —L;—f(woA w3>
— (1 — f2yr2
1__(__172_]_‘_2’__ (wz/\ wa) 0
r? 1 3 "'(f_z _rt ( 1 3)
+rf<wAw)+|:r 2) r]wl\w
The isolated + and — signs are meant to reflect the ar? =[1-~f2(p)dT2— [1 -~ f2(p)] 1dp2
ey i = Gy e the antisymmetry 6, = —r2p)anz. (i)

A brief additional calculation finds the nonvanishing
components of the Ricci curvature tensor field to be
given by
Roo =V 2(%)(2) + 2(7”/7)f2:
Ryy =Ry = 20r"/7)f,
Ryy =—V2(zf2) + 2r"/r,

Ry =Ry, ={{Gr2)y (1 —f2)) — 1}/ra.

(19)

Here V2 is the Laplacian for any one of the spacelike
hypersurfaces Z, orthogonal to «; it is determined by the
Riemannian line element (3). For a function % (p),

v2[k(p)] = [1/72(p)] (r2h")’(p).

The scalar field 2/2 that appears in these formulas is
3(1 — go0), as calculated in the coordinate system [¢,p,
$,¢]. As such, it is the conventional general-relativistic
analog, for the gravitational field described by the line
element (1), of the negative of the Newtonian gravitational
potential. By the same token — V(f2/2) is the analog of
Newton’s force of gravity. If the ether flow rate |f] is
constant, then this gradient is 0, and, following convention,
one has to say that in this case the gravitational field
exerts on test particles no force in the Newtonian sense.
It is this observation which provides the rationale to
identify ‘‘gravity’’ with the internal, relative motions of
the postulated ether, as distinguished from its overall
rigid motions.

(20)

V. HORIZONS

The line element (1) assumes a familiar form upon intro-
duction of a new coordinate T satisfying

dT =dt + f(p)[1—f23(p)] 1dp.

It is

(21)
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This is analogous to the usual orthogonal form of
Schwarzschild’s vacuum line element and reduces to it
when 7(p) = p and f2(p) = 2m/p, m being the mass para-
meter. It is clear from Eq. (1) that the translations
along the T coordinate curves are isometries, hence

that 8/27 is a Killing vector field. It is also clear that
9/9T is everywhere orthogonal to the hypersurfaces on
which T is constant. Therefore, wherever f2 < 1, so that
2/3T is timelike, the manifold is static. This was stated
in Sec.II to be the case; it was also said at that point

that 9 /8¢ is hypersurface orthogonal, and this now follows
from the determination that 3/3f =9/3T.

The Schwarzschild horizon, where p = 2m, corresponds
in the general case to 2-spheres S, ¢,p On wWhich f (p) =

£ 1. The ether-flow picture includes a graphic inter-
pretation of such horizons. On each such sphere the
coordinate speed of the drifting ether, which is | f(p)!,
just matches the speed of light with respect to the ether.
From Eq. (13) it follows that if S, | is intersected by the
null path p, then 0 < dp/dt < 2 1ff(p) =1,but— 2=
dp/dt = 0if f(p) = — 1; therefore, if p crosses S, p»its
radial velocity component and that of the ether fiow can-
not be oppositely directed at the crossing point. Thus
light rays can only cross a horizon in the downstream
direction of the flow. One can easily check that the only
paths of light rays that contact a horizon without cross-
ing it belong to the upstream member of the pair of
radial null congruences mentioned in Sec. III; these light
rays remain forever on the horizon, struggling to go no-
where. In regions where f2(p) > 1, such as Schwarz-
schild interiors, all light rays are swept along down-
stream, even those whose motion relative to the ether is
upstream. In regions where f2(p) < 1, such as Schwarz-
schild exteriors, some are able to progress upstream,
but only with difficulty when near the horizon. People in
light canoes should avoid ethereal rapids!

Another space—time manifold whose line element can
assume the forms (1) and (1), and that possesses a
horizon, is the de Sitter cosmological model,11.12 for
which »(p) = p and f2(p) = (p/R)2, R being a positive
parameter. It models a universe that is devoid of mat-
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ter yet exhibits gravitational effects, Test particles in
this universe cannot remain at rest with respect to one
another, for they have to share in a cosmological expan~
sion or contraction, which may be identified with a linear
expansion or contraction of the ether, reflected in the
form that f has. The 2-spheres S, , constitute a hori-
zon which is the edge of the field of vision for all observ-
ers on the upstream side of it. Here, again, gravity
corresponds to nonrigid motions of the ether.

VI. THE SCALAR FIELD AS PLUMBER'S FRIEND

We come now to the task of opening up the Schwarz-
schild singularity so that the ether may flow through
unimpededly. To discover the cause of the constric-
tion, let us refer to the formulas (19) for the compo-
nents of the Ricei curvature tensor field and observe
that the Einstein vacuum field equations Ryq = Ry, =
Ry, = 0 imply that »” = 0, hence that »(p) is a linear
function of p, which in view of the field equation Ryy = 0
cannot be constant, that » must therefore have a zero,
and that as p approaches this zero the 2-spheres S, ,
shrink to points, these points constituting the Schwarz~
schild singularity. In this way we may identify as the
cause of constriction an excess of strength in the Ein-
stein vacuum field equations. To weaken these equa-
tions and thereby to remove the constriction, an aid is
required, a plumber’s friend so to speak. Let us find
one.

The Ricci tensor field is w* ® R, , w*, where the R, are
given by Egs. (19). Look at the terms that involve r”.
Their sum can be factored:

20 /7)[f2wO0® wO) +f(W0® wl +w!® wl) +wl® w!]
= 20" /) fw® + 0w1) ® (fw?® + wl) (22)
= 20r"/r)(dp ® dp).

Now let @ be a nonconstant, differentiable, real-valued
function on the real line, and let ¢ = a(p). Then the
square of the gradient of the scalar field ¢ is given by

do ® do = a'2(dp ® dp). (23)
Upon comparing Eq. (23) with Eq. (22) we see that a
field equation of the form

Ricci tensor field = K(d¢ 8 d¢), (24)

with nonzero coupling constant K, will replace the un-
wanted condition ” = 0 with the less restrictive condi-
tion ¥” = 3 Ka'2r. This latter condition implies that the
radius function r is convex if K > 0,but concave if

K < 0. If r is concave, then it is impossible for the
space—time manifold 9 to have a central hole such as
the one that Fig.1 shows a cross section of. The reason
is that on each great-circle cross section of a typical
spatial cross section I, of 9 the induced Gaussian
curvature is given by the scalar field — »”/r. Concavity
of » renders this curvature everywhere nonnegative,
which in a hole of the kind envisioned it cannot be. To
enlarge the Schwarzschild singularity into a proper hole,
we must therefore take K > 0 so that » will be convex.13

As it happens, the coupling expressed by Eq. (24) is
known to derive from the simple variational principle

0=0[(gV2(Rx, —K¢<¢ Jdix. (25)
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Once K has been made positive in Eq. (25), it may be
replaced by the number 2, for this involves at most a
rescaling of ¢. Then the Euler equations that together
are equivalent to the variational principle are

R, — iR*. g, = 29,9, — 1¢0 g, (26)
and the scalar wave equation
O¢ = TrdG-1do) = ¢:%,, =0, (27

in which G is the metric tensor field. Equation (26) is
equivalent to

Rpu = 2¢,p ¢,y;

which in turn is equivalent to Eq. (24) with X = 2.

(28)

These are the field equations by way of which the scalar
field ¢ will be applied to the ethereal plumbing problem.
The next section will present all of their solution mani-
folds that have line elements of the form in Eq. (1), as
well as the analogous solutions for the equations that
would have resulted had K been taken negative. Of the
former, one will turn out to be geodesically complete
(also static and possessed of a central hole); of the
latter, none will.

VIl. THE ETHER-FLOW, DRAINHOLE, PARTICLE
MODEL

Under the assumption that ¢ = a(p), the wave equation
(27) is equivalent to

[r2(f2— a'] =0, (29)

and the field equations (28) are equivalent to the three
equations

r'/r =a'?, (30)
[r2(f2/2)') =0, (31)
[r2/2)'(1—f3)) =1. (32)

The last two yield, upon integration and rearrangement,

r2(1—f2) = 2m (33)
and

r2(1—52) = 2(p — m), (34)
where without loss of generality the zero point of p has
been adjusted to equalize the integration constants. Com-
bined, these equations produce, after integration,

r2(1 —f2) = p2 + C. (35
Also, Eq. (29) integrates to

a’ =—n/[r2(1 —f2)] = —n/(p? + C). (36)
From Eqgs. (34) and (35) it follows that

r'/r = (p—m)/(p2 +C), 37
hence that
vy =0 /r) + 0'/r)2 = (C +m?)/(p? + C)2. (38)

Thus Eq. (30) adds only the information that C =n2 —
m 2. Equations (36) and (37) now imply that
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r2(p) = [p2 + n2 — m2| g@mma(p), (39)
provided a is made to absorb additively the integra-
tion constant, which it can do with no change in a’,

hence with no effect on the field equations.

At this stage Eq. (1) for the line element has been
specialized to

— e@m/madp? + (p2 +n2 — m2)dQ2]}, (5.
and the only integration left to be done is that of Eq.
(36), which now reads

a'=—n/(p? +n2—m2), (367)
This requires consideration of three cases: (I) n2 < m?;
() n2 =m?2;(IlI) n2 > m2, In each case n will be taken
to be nonnegative, for at the end only #2 will appear.
Also, the boundary condition that

lim ¢ = hm alp) =0

pro0

(40)

will be applied. This limit always exists; requiring it to
be 0 is equivalent to requiring that the line element in the
form (15 ,) be asymptotic to a Schwarzschild vacuum

line element (with mass parameter m, it turns out).
Within isometric equivalence this boundary condition
does not reduce the set of solution manifolds, the reason
being that it has no effect on a’, and only «’ appears in
the field equations.

Case | (n* < m*)
Leta = (m2 —n2)1/2, Then

a'(p) = —n/(p2 — a?),
a(p) = (n/2a) log | (p + a)/(p — a)l,

41
r2(p) = |p2—a2l-|(p +a)/(p—a)|me “y

— Ip + al (m/a)*l/]p — a| (m/a)"l’
f2(p) =1— sgn(p2— a?)|(p —a)/(p + a)| ma,

When n > 0, there is a separation of the space-time
manifold 9N to which these formulas apply into three
connected submanifolds, corresponding to the radial
coordinate ranges p < —a, —a<p<a, anda<p. If
m # 0, the formula for f2(p) implies that /2 > 0 on two
of these submanifolds, but that 2 < 0 on the other one,
namely, the one corresponding to p < — a, if m > 0, but
the one corresponding to a < p, if m < 0. Because f is
imaginary, the line element on this submanifold, though
real in the form (1), is complex in the form (1), and ¢
must be interpreted as a complex coordinate, related to
the real coordinates T and p by Eq. (21). The computa-
tions that have gone before all remain valid, but the
description of the geometry and the interpretation of the
vector field # must be modified. In particular the cross
sections Z, are two-dimensional instead of three-dimen~
sional, and # is complex instead of real. There is no
horizon of the Schwarzschild type on this submanifold,
for these occur only where f2(p) = 1.

In the two submanifolds of 9N on which /2 > 0 the typi-
cal spatial cross section Z, is three-dimensional, and
its shape is determined by the function », whose graph
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when m > 0 is shown in Fig. 2. (Reflection of this graph
through the vertical axis produces the graph of » when
m < 0.) If, let us say,m > 0, then in the submanifold on
which a < p the radius »(p) of the 2-sphere S, decreas—
es from « to a positive minimum value 7 (m) as p
decreases from o to m, after which it returns to © as

p — a. Therefore, each cross section Z, in this sub-
manifold has a central hole of positive minimum radius
¥(m). In the other submanifold, S, £ undergoes infinite
expansion as p — a, but shrinks toward point size as

p — — a; the cross section Z, thus has in its center only
a pinhole and not a hole of positive radius, Neither of
these two submanifolds has a horizon except in the
asymptotic sense that f2(p) > 1 as p » a. When m < 0,
their geometry is demonstrably the same.

The Schwarzschild manifold occurs when»# = 0, in which
case a = |m| and m is the Schwarzschild mass. The
graph of » when m > 0 is included in Fig.2. The
Schwarzschild singularity, where »(p) = 0, corresponds
to p = — m, and the horizon, where f2(p) = 1,top =m

An illumination is cast upon the Schwarzschild solution
by the observation that it is unstable as a solution of
the field equations (26) and (27) in that,asn — 0, » con-
verges pointwise to the Schwarzschild form, but not
uniformly. The two submanifolds on which f2 > 0 coa-~
lesce, but only reluctantly, at the Schwarzschild hori-
zon. This phenomenon is another aspect of the be-
havior of the Schwarzschild horizon under perturba-
tions, discussed by Janis, Newman, and Winicour,14 and
by Penney. 15 They have found and examined a solution
of the field equations used here, but with the coupling
constant negative rather than positive—for them

K < 0 in the variational principle (25). Their line ele-
ment is the same, but for choice of coordinate system
and parameter names, as the one given by Eqgs. (41)

n>0

-m-a 0 am p
FIG.2. The graph,for m > 0, of the radius function 7 in Case I
(n2 < m2), Here r2(p) = |p + a [1*™/{g — a |1"m/a and a = (m2—n2)1/2,
For m < 0, reflect the graph through the vertical axis.

k.
>

-a ~m O m a
FIG.3. The graph,for m > 0, of the radius function 7 obtained from
the Case I solution by replacmg n? with — n2. Here 72(p) = |p+a|l*m/e
%X |p—alt"m™e and a = (m2 + n2)¥/2, The corresponding line element
satisfies the fxeld equations generated by the variational principal of
Eq.(26) with K = — 2.
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with a = (m?2 +n2)1/2, As such, it is the only solution
of the negatively coupled field equations that can take
the form of Eq. (1), except the solution, falling under
Case II, in which m =» = 0. The graph of the radius
function 7 for this solution is depicted in Fig. 3, again
under the assumption that m > 0. This » likewise con-~
verges pointwise but not uniformly to the Schwarzschild
v asn — 0. And here, also, there is, when n > 0, separa-
tion of 9N at — a and ¢ into three connected submani-
folds, none containing a horizon. As was forecast in
Sec. VI, v is concave; hence none of these submanifolds
has more than a pinhole at its center. This solution was
earlier discovered by Bergmann and Leipnik,16

Using Eq. (18), and assuming either coupling polarity,
one can easily see that if n > 0, then at each of the
edges where pZ — a2 some of the curvature components
become infinite, but that if » = 0, this happens only at the
edges where p > — m. Because the frame system

is orthonormal, these apparent singularities in curva-
ture are real. Owing to their presence, it is impossible
to extend metrically across one of these edges any sub-
manifold of . For this reason neither M nor any pos-
sible metric extension of M will be geodesically com-~
plete if there is a geodesic in I that arrives at one of
these edges without using up its affine parameter., That
there are such geodesics will be established in Sec.
VIIL.

Case Il {n? = m?)
Here

a'{p)=—n/p2,
yz(p) = pZeZm/p’

f3(p) =1~ e2m/p.
rie) A

—
¢

-m 0 m [

FIG.4. The graph,for m > 0, of the radius function » in Case 11
(n2 = m2), Here v2(p) = p2e2m/», For m < 0, reflect the graph through
the vertical axis.

rip) 1}

SLOPE =-eM™7/0

m

py
.

-m O m P

FIG.5. The graph for m = 0, of the radius function ~ in Case III
(2> m?). Here v2(p) = (p2 + a2) e@m/W0), o(p) = (/a)[n/2 —~
tan"(p/a)],and @ = (n2 — m?2)1/2, The minimum value of », namely
7(m), is the radius of the drainhole; it ranges from n up to ne— as m
goes from 0 to n—, and it always exceeds 2m. That the associated
manifold 9 ,, , is asymptotically Schwarzschildean as p — « is ref-
lected in the relation »(p)~p + masp = ©.
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This is the limiting case of Case I as a > 0. The mani-
fold on which — a < p < ¢ has been squeezed out. The
two remaining manifolds, corresponding now to p < 0
and 0 < p, are in all qualitative aspects, including in-
finite edge curvatures, unchanged (unless m = = 0,
which results in two copies of flat Minkowski space-
time). In particular, if m = 0, neither of them possesses
a horizon, is metrically extendible, or is geodesically
complete. The graph of 7 for m > 0 is shown in Fig. 4.
The line element has been exhibited by Yilmaz in the
form (15 ).17

Case U1 {n? > m?)

This is the case of greatest interest, for the line ele-
ment measures a connected and geodesically complete
space~time manifold with a drainhole. Let a =
(n%2—m2)1/2, Then

a’'(p) = —n/(p2 + a?), a(p) = (/a)37 — tan" (p/a)),
r2(p) = (p2 + aZ)e(Zm/n)u(p), f2p)=1— e~ Cm/n)alp),

(43)
Because 72 and 1 — f2 are everywhere analytic and
positive, these formulas determine an analytic line
element of the form (1;), which now becomes (15 ) with
n2 —m?2 = a2, This line element fits a manifold on
which the coordinate p ranges from — ® to ©, as does
also the coordinate 7. This manifold will be shown in
the next section to be geodesically complete. Let it be
denoted M, .

If m = 0,then 0 = f2 < 1, and the form (1) of the line
element of M is real. The relation between the time
coordinates ¢ and T, expressed by Eq. (21), depends upon
whether f = 0 or f = 0, but in either event { is real and
ranges from — ® to @, If m = 0, then f = 0 (the ether is
at rest). When m > 0, f2(p) decreases from 1 —

e ?2mv/atg 0 as p goes from — © to . There is no hori-
zon, because f2(p) is never 1.

Figure 5 displays the graph of the radius function v
when m = 0. The 2-spheres S, ; of constant ¢ and con-
stant p are smallest when p = m;they undergo infinite
expansion both as p — ® and as p — — ®, It follows
from Eqs. (43) that the minimum radius 7 (), con-
sidered as a function of m, increases from n tone— as
m goes from 0 to n—. Thus the order of magnitude of
the radius of the drainhole is determined by #, the only
noticeable effect of m being to bound it below via the
first two of the inequalities m < n =< v(m) < ne (actually,
as Fig, 5 shows,r(m) > 2m).

It is not difficult to establish that the following asymp-
totic relations hold, whether m > 0, m = 0,0or m < 0:
asp — o,
a(p) = (n/p) + 0(1/p3),
r(p) = (p + m) + O(1/p), (44)
f2(p) = [2m/(p + m)] + O(1/p2?);

as p - — o,

a(p) = (nu/a) + (n/p) + 0(1/p3),
r(p) = — (p + m)em™s + O(1/p), (45)
F2(p) =1—e2mmha[1—2m/(p + m)] + O(1/p2).

These relations imply that the manifold 9, , is,in the
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usual loose sense, asymptotic as p » « to the Schwarz-
schild manifold with mass parameter m. They also imply
that I, is asymptotically flat, both as p — © and as

p — — o, because, as may easily be checked, the coeffi-
cients (f2/2)", (r’f)'f/r,etc.,in the expression (18) for
the curvature forms © ¢ are asymptotic to 0. (This
criterion for asymptotic flatness is acceptable because
the frame system ep} is orthonormal.,) It is natural to
ask if M, , is also asymptotically Schwarzschildean as
p ~>— . The answer is that Il , is asymptotic as p -
— o to the Schwarzschild manifold with mass parameter
— memme_ This somewhat surprising conclusion is a
consequence of the observation that if m = — mem™ and
n =nem™"e, then there is an isometry between 97, , and
M z which reverses the direction of increase of the
radial coordinate and thus matches up opposed asymp-
totic regions. Such an isometry is obtained by identify-
ing the point of 9T, , having S-type coordinates [T, p,

#, @] with the point of 9 ; ; whose S-type coordinates
are [Temme, — pemna s o],

Because these isometries exist, no physically useful
" distinction can be drawn between the manifolds with
positive mass parameters m and those for which m is
negative. On the other hand, in each such manifold there
is a clear physical distinction between the two sides of
the drainhole, for one side is asymptotic to a Schwarz-
schild manifold whose mass parameter is positive, while
the other is asymptotic to a Schwarzschild manifold
whose mass parameter is negative. In the study of the
geodesics of 9, , it will appear that, when m > 0, test
particles are always accelerated in the direction of de-
creasing p. This is toward the drainhole when p > m,
but away from it when p < m. Thus if m > 0 (and like-
wise if m < 0), the manifold 9N,, , models a Janus-faced
particle that attracts matter on one side and repels it
{more strongly) on the other,

The curious asymmetry between the positive mass, say
m, and the negative mass m of the particle, expressed by
the equation

m/m = — exp[mn/(n2 — m?2)1/2), (46)
is a facet of the model that is especially eye-catching, It
is even more so in light of the observation that certain
not unnatural specifications of m and » will cause the
equation to generate some of Dirac’s outsized, dimen-
sionless physical ‘‘constants’’, which are about 1020%,
where & is some small nonzerc integer.18 Specifically,
if m is of the order of a proton mass, 1.2 x 10-52 cm,
while 7 is of the order of Planck’s length, 1.6 X 1033 cm,
then — m/m = 1 + 10719, If instead z = 2.8 x 10713 ¢m,
the classical electron radius, then — 7w /m ~ 1 + 10739,
A speculative extrapolation from the asymmetry be-
tween m and m is that the universe expands because it
contains more negative mass than positive, each half-
particle of positive mass m being slightly over-
balanced by a half-particle of negative mass m such
that —m > m.

The case where m = 0 is particularly interesting. The
ether is not flowing, because f = 0. However, the drain-
hole remains open, because 7(p) = (p2 +n2)V/2 =5 > 0.
The manifold is symmetric with respect to reflection
through the drainhole. The catenoid of Fig.1 is the
cross section of M, , on which¢ =0 and ¢ = 7/2.
Although massless, the particle modeled interacts with
test particles, as the study of its geodesics will show.
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The scalar field ¢ that holds the drainhole open satis-
fies the scalar wave equation. If in the flowless case
some disturbance were to cause the drainhole to pinch
in two, there would be left on each side a central bump
in a topologically and asymptotically Euclidean 3-space.
These bumps, being directly associated with ¢ via the
field equations (28), would radiate away with the funda-
mental speed of wave propagation. The particle would
have dematerialized from a drainhole to a ¢-wave.
When m # 0, the same thing presumably could happen,
but in addition there should arise a traveling gradient
in the ether flow, identifiable, one imagines, as gravita-
tional radiation. Such a picture of changing topology
and geometry provides a graspable basis for attempts
at understanding the wave-particle duality of matter.

Vill. GEODESICS AROUND, ABOUT, AND THROUGH
THE DRAINHOLE

The starting point for the study of the geodesics of the
manifold 9N bearing the line element (1) is the earlier
equation

b =1ey(p) + [p — f(p)i)ey(P)
+7(p)dey(p) +7(p)(sind)ges(p), (12)

which holds for every path p in 9. From Egs. (12),
(A3), (A1), (7), and (5) it follows that

b= [i' +1(b —f1)?2 +f(—§—2)' ﬂzJ—aa—t (p)
+[o-(%) w2~ G-
~a-ra(5)a2) Lo

+ [a +27 3 — (sing) <cos"><?’2J 75 (7)

v ¥ e . d
+ <(p t2-pp+ 2(ctnd) 19<p>5; (p), (47)
where
2 =32 + (sins)2 o2, (48)

Now let  be a maximally extended geodesic path, affine-
ly parametrized, so that p = 0. This equation is equiva-
lent to the four scalar equations that say that the com-
ponents of p in Eq. (47) are 0. For reference call these
the ¢-,p-, ¢-,and ¢-equations.

Reflecting the spherical symmetry of the metric, the ¢~
and ¢ -equations entail that the orbit of the path p lies
in one of the great-circle cross sections of M, which
are those hyperspaces typified by the equatorial cross
section, defined by 4 = 7/2. The angular-momentum
first integral of the $- and ¢-equations is

729 = h. (49)
The ?- and p-equations have the first integral
(1 —F2)f +fp = k. (50)

Suppose next that the parameter on p is the proper time
along p if p is timelike, the proper distance along p if p
is spacelike. Then the #-,p-,¢-,and ¢-equations have
the first integral

e=|pl2=12— (p—fi)2 —r2Qz2, (51)
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where ¢, the indicator of p, is 1, 0, or — 1, according as p
is tlmehke null, or spacelike. A COnsequence of Egs.
(49), (50), and (51) is that

P2 = k2 — (1 — f2)(€ + h2/7r2). (52)
When the first integral (51) is used in the p~equation,
there results

p=e(f2) + 321 —f2) — (r2)(1 — f2)'] Q2. (53)
If we utilize the integrals (33) and (34) of the field equa-
tions, then Eq. (53) becomes

P =el—m/r2) + (p— 2m)Q2. (54)
This equation applies in each of Cases I, II, and III of
Sec.VII, It implies that, when m > 0, test particles on
radial paths are always accelerated in the direction of
decreasing p. In Case III this means that the drainhole
attracts matter on the side identified by asymptotic com-
parison to a Schwarzschild manifold as having positive
mass, and repels it on the side to which negative mass
has been ascribed.

Completeness

For a null, radial geodesic, € =k = 0, and Eq. (52) implies
that p = + k If £ = 0, then p is constant and Eq. (50)
allows two possibilities. One is that b= 0, in which
case f, also, is constant; the geodesic is degenerate,
frozen at one point of space—time. The other possibility
is that f2(p) = 1;in this case the light signal whose

path is p is stuck on a horizon, but not frozen in time.

If on the other hand k # 0, then p is a nonconstant, linear
function of the affine parameter. From this it follows
that if N is any one of the nonflat space—-time manifolds
discussed under Cases I and II of Sec. VII, then 9N has
null radial geodesics that come up to an edge where
there are infinite curvatures without exhausting their
affine parameters in the process. As was remarked in
Sec. VII, this implies that none of those manifolds has a
geodesically complete extension.

Turning now to Case III, let us see whether the space-
time manifold 9%, , is geodesically complete. Denote
by p* that portion of the path p on which the parameter
is nonnegative. If p* is confined to a compact region of
the manifold, then p* includes all nonnegative numbers
in its parameter interval, for p is by hypothesis maxi-
mally extended. If p* is not so confined, then either
p(p*) or t(p*) is unbounded. Butf2(p) and »2(p) are de-
fined for all values of p,and both 1 — 72 and 1/72 are
bounded. Hence Eq. (52) implies that p is bounded. On
the other hand, 1/(1 ~ f2) is bounded, and, therefore, in
view of Eq. (50), ¢ is bounded. No unbounded function
with bounded derivative is restricted to a bounded
interval, so that again the parameter of p consumes all
the nonnegative numbers. In the same fashion p’s
parameter uses up all the nonpositive numbers. There-
fore, M, . is indeed geodesically complete.

It is interesting to note that completeness depends only
upon these properties of f2 and 72 in addition to the
smoothness that they possess: (a) Each of f2 and 72 is
defined on the interval (— «, ®); (b) »2 is bounded away
from O, so that there is in fact a hole in the manifold
that is bigger than a point; (¢) /2 is bounded; (d) 72 is
bounded away from 1, which means that there is no
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horizon, not even an asymptotic one at an edge of the
manifold.

Goedesics of smo n

In describing the geodesics of the manifolds M, , of
Case III it will be easiest to treat 9 , separately The
condition m = 0 is equivalent to f = 0; the first part

of the discussion will apply merely if f = 0, irrespective
of whether any field equations are satisfied. The line
element (1) decomposes into a purely temporal part

and a purely spatial part; this shows up in Eq. (51), which
now reads

€ = 22 — &2, (55)
where
02=p52+72(p)0 2. (56)

Because of this decomposition the Killing vector field
9/d¢ is orthogonal to the spatial cross sections Z;and
the projection of the geodesic path p on any one Z, via
translation of its points along the ¢ lines is a (perhaps
degenerate) geodesic curve of Z,. This curve is alsoa
spacelike (or else degenerate) geodesxc curve of the
full space—time manifold 9N, and ¢ measures proper
distance along it.

From Egs. (50) and (55) it follows that 62 = 22 — ¢,
hence that ¢ = 0. Thus test particles undergo no
accelerations of the classical Newtonian kind that are
associated with forces. In this sense the manifold M
produces no gravitational effects on test particles (or
on light rays, for that matter), and 9 can therefore be
said to be devoid of gravitating mass. This, however,
is not to say that M is free of all matter. The reason
for not ruling out massless matter is that in 3, , all
nonradial test particle or light ray paths bend toward
the drainhole, even to the extent that many of them loop
around it again and again. This will become apparent as
next the geodesics of M, , are described in detail.

It is sufficient to consider in 9N, = those spacelike
geodesic paths p for which t=k= 0, inasmuch as all
geodesics project onto them in the manner described
above; these are just the geodesic paths of Z, with re-
spect to the inherited Riemannian line element (3), para~
metrized by arc length, It is further sufficient to con-
sider the case where ¢ = 7/2, and then p will lie on the
catenoid depicted in Fig.1l. On some of these geodesics
p = 0and @2 = 1/n2, On all others any zero that p has
must be isolated, and for these Egs. (49) and (52) can
be combined into the orbital equation

do\2 _ (,D 2_ h2 _ n2
d) \p) 72— (pZ+n2)(p2 +n2—h?)’

(57)

valid except at isolated points of the path p.

The geodesics fall naturally into three classes, corre-
sponding to (a) k2 > n2,(b) k2 = n2,and (c) k2 < n2,
Typical and atypical geodesics in these classes are
shown in Fig. 6. Each of them reflects through the
drainhole onto a geodesic of the same class.

A typical geodesic satisfying #2 > n2 spirals in from
infinity to 2 minimum distance (42 — 72)/2 from the
neck of the drainhole (where p = 0), and then spirals out
to infinity again. The smaller the distance of closest
approach to the neck of the drainhole, the greater the
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number of revolutions around the drainhole. A test
particle on such an orbit can be trapped for any length
of time (whether coordinate time ¢ or proper time 7),
but ultimately it will escape. There are no atypical
geodesics in this class.

If k2 =n2, a typical geodesic orbit starts from infinity
and spirals in asymptotically to the center circle,
which itself is the lone atypical geodesic orbit for this
case. A test particle on one of these orbits will be
trapped forever, or, if it follows the orbit in reverse,
has been trapped forever but is gradually escaping.

In case k2 < n2, a typical geodesic spirals in from
infinity, passes through the drainhole, and spirals out
to infinity on the other side. The atypical geodesics
trace out the p lines, which pass through the hole but
do not spiral. Test particles following these orbits are
lost forever to observers on the initial side, who would
be able, however, upon looking toward the drainhole, to
see them slowly fading away, like scintillations in a
crystal ball.

The capturing of test particles and of light rays by the
flowless drainhole for various lengths of time ranging
upward to infinity would seem to warrant thinking of
the manifold M, , as at least a rudimentary model of
what a massless nuclear binding particle might be like.
One’s inclination in this direction is reinforced by the
observation that the capture effect is of short range.
For example, if the distance of closest approach is 10
times the drainhole radius », then the total bending of
the geodesic amounts to less than 0.5°. For the total
bending to be 180° (half a loop), the distance of closest
approach must be about 0. 27, which puts the point of
closest approach on a sphere of symmetry whose
radius is about 1.02#; for a full loop the corresponding
numbers are about 0.03z and 1.0006#%.

Geodesics of My p (m > 0)

The discussion will proceed mainly from Eq. (52},
rewritten as

p2 = 2E +F. (h2,p), (58)
where E = $(k2 — ¢) and

F (h2,p) = ¢f2 — h2(1 — £2)/r2
=¢fl—e (2m/n}a (0] — p2/e@mmdalod p2 + g2)1, (59)

An adequate qualitative description of the geodesics can
be easily read off from the graphs, for ¢ = 0,1,— 1, of
the functions of the family F_(22,p). Because p =

1 F_’ (h2,p), the turning points of orbits will occur where
F, (r2,p) = — 2E and F."(h2,p) = 0, and circular orbits
will occur where F, (k2,p) = — 2E and F,'(h2,p) = 0.

The circular orbits will be stable if £”{h2,p) < 0,un-
stable if F”(h2,p) > 0.

Null geodesics

Here 2E = k2 = 0. The graphs of the functions F,(22,p)
appear in Fig.7. Adding 2E to F,(k2,p) to get p2 shifts
the graphs upward (unless 2E = 0); only those points

of the graphs that are shifted to the upper closed half-
plane correspond to points of geodesics, For various
ranges of E and k2 the possibilities can be summa-
rized as follows:

i) E=0:
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(a) k2 = 0; degenerate geodesic at each point
of M,, ,.

{b} k2> 0;no geodesic.
(ii) E> 0:

(@) 0=hn2<2Er2(2m){1— f2(2m)]1; geodesics
beginning at «, passing through the drainhole, ending at
— @, and vice versa.

(b) k2 = 2Er2(2m)[1 — f2(2m)] 1; geodesics with
unstable circular orbit at 2m; geodesics beginning at ©

(c) h¥<n?
FIG. 6. Typical and atypical orbits of test particles (a) around, (b)
about, and (¢) through the drainhole of Case III (#2 < m2) when m = 0.
The surface to which the orbits are confined is the catenoid of Fig. 1.
It is isometric to every great-circle cross section of the spherically
symmetric space surrounding the drainhole. The orbits fall into the
three classes according to the amount # of angular momentum. The
only atypical orbits are the central circle in (b) and the radial lines
in {c). Every reflection of an orbit in the drainhole is again an orbit
of the same class.,

Fo(h?, p)

h2=0

\\,

h2x oo

FIG.7. The graphs of the functions F (#?,p) for various values of k2,
Each funiction has a2 minimum at 2. From the equation p2 = 2E +
Fy{h2,p) one can find the turning points of null geodesics of M m.n OY
referring to this picture.

13
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and ending by spiraling down to the circular orbit, and
vice versa, spiraling up from the circular orbit to «;
geodesics beginning at — «, passing through the drain-
hole, and ending by spiraling up to the circular orbit,
and vice versa.

(c) h2> 2Er2(2m)[1 — f2(2m)]1; geodesics begin-
ning and ending at ®, reaching lowest points (p a mini-
mum) which move up from just above 2m to « as E
decreases or &2 increases; geodesics beginning and
ending at — «, reaching highest points (p a maximum)
which move down from just below 2m to — « as E de-
creases or k2 increases.

Timelike geodesics

In this case 2E = k2 — 1 = — 1, Figure 8 exhibits the
graphs of the functions ¥, (k2,p). Their critical points
occur where 22 = mr2(p)(p — 2m) ! = y(p), which is on
the upper side of 2m. The locus of critical points has a
maximum where p = 3m + (4m2 +n2)/2=p anda
zero, p;, between 2m and p,. The catalog of timelike
geodesics reads as follows:

(i) —1=<2E=1 + e (2m7a) no geodesic.
(i) — 1+ e @ma) < 2E < — Fyly(py), Pp):

(a} 0= k2 <y(py);geodesics beginning and ending
at — o, reaching highest points (p a maximum) which
move from above p, down to — ® as E decreases.

(b) k2= 4(p,); geodesics beginning and ending at
— ®, reaching highest points below p, which move down
to — © as E decreases or k2 increases.

(iii) 2E =— Fl('Y(Po)xPo):

(a) 0= h2<.y(p,y);geodesics beginning and ending
at — o, reaching highest points above p,.

(b) h2 =y(p,); geodesics with semistable circular
orbit at p, [small perturbations satisfying 2(E + AE) +
F1(r2 + AR2,p) = 0, where p is the lesser root of y(p) =
h2 4+ AhZ2, change the orbit but little, and all other small
perturbations result in orbital decay to — «©]; geodesics
beginning at — © and ending by spiraling up to the
circular orbit, and vice versa, spiraling down from the
circular orbit to — «,

(c) k2> y(py); geodesics beginning and ending at

1} Fi(hZ,p)
| -e-(2mmra)
=
=
hé=0
hz=7(po)
h2=y(p))
~ =
4 ~
/ =
Fi(y{pol, po) ‘/ e
0 MY P i
h2= o
———F,(y(p), )

FIG.8. The graphs of the functions F(k2,p) for various values of 22,
The dashed curve is the locus of critical points of the functions, which
are minima to the left of, maxima to the right of pg[ = 3m +

(4m2 +n2)2/2], F,(y(p,),p) has a horizontal inflection point at p,.

As p o —w0,F,(h?,p) - 1 — e"(2m1/a) Agp > 2m+, Fyy(p),p) = —wn.

As p = ©,F (h%,p) - 0 and F(y(p),p) — 0. From the equation
p2 = 2E + F,(k?,p) one can find the turning points of timelike geo-
desics of M, , by referring to this picture.
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— «, reaching highest points which move from just below
Po down to — o« as E decreases or k2 increases.

(iv) — Fyb(pg), py) < 2E < 0. Let p* and p** denote the
two roots of 2E + Fy(y(p),p) = 0, with p* < p**;let o*
denote the root of 2E + F,(y(p*),p) = 0 distinct from p*,
and define p** analogously. Then p** < p* < p, < p** <
p*, and, as E increases, p* moves down from po— to

py+, while p** moves up from py+ to .

(@) 0= h2<,(p*);geodesics beginning and ending
at — o, reaching highest points above p*.

(b) 2 = y(p*); geodesics with unstable circular
orbit at p*; geodesics beginning at — ©, passing through
the drainhole, and ending by spiraling up to the circular
orbit, and vice versa; geodesics beginning by spiraling
up from the circular orbit to highest points at p*, end-
ing by spiraling back down to the circular orbit.

(€) y(p*) < h2 <y{(p**); geodesics beginning and
ending at — ©, reaching highest points between p** and
p*; geodesics having stable bound orbits and periodic
radial motions, with lowest points between p* and p**
and highest points between p** and p*.

(d) h2 =y (p**); geodesics beginning and ending
at — o, reaching highest points at p**; geodesics with
stable circular orbit at p**.

{e) %>+ (p**); geodesics beginning and ending at
— ©, reaching highest points below p** which move down
to — ®© as k2 increases.

(v) 2E = 0. Let p* be the root of 2E + F,(y (p),p) = 0.
As E increases, p* moves down from p; to 2m+.

(@) 0= h2<y(p*);geodesics beginning at ©, pass-
ing through the drainhole, ending at — ©, and vice versa.

(b) k2 = (p*); geodesics with unstable circular
orbit at p*; geodesics beginning at «, ending by spiral-
ing down to the circular orbit, and vice versa; geodesics
beginning at — o, passing through the drainhole, ending
by spiraling up to the circular orbit, and vice versa.

(€) h2>+(p*); geodesics beginning and ending at
©, reaching lowest points which move up from just
above p* to © as k2 increases; geodesics beginning and
ending at — ©, reaching highest points which move down
from just below p* to — ® as 22 increases.

Spacelike geodesics

When one examines the graphs (not presented here) of
the functions F_, (2, p), taking into account that 2E =
k2 + 1 = 1, he sees that the spacelike geodesics fall
into three classes analogous to the three classes of
timelike geodesics on which 2E = 0. The principle
observation of interest is that, as E increases, the cir-
cular orbits move up from m, where the drainhole is
narrowest, to just below 2m.

Capture of light rays and test particles

With good enough starts both light rays and test par-
ticles can coast upstream all the way to ©, even if they
begin as far down as — © and procrastinate by spiral-
ing as they go. The drainhole, then, is no ‘‘black hole’
like the Schwarzschild singularity, surrounded by its
one-way horizon. On the other hand, the drainhole does
absorb many of the light rays and test particles that
approach it from the upper side, by either capturing them
or letting them pass through to the lower side. Per-
haps the drainhole would qualify as a ‘‘gray hole.”
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For the Schwarzschild model with positive mass m’
Darwin has established that no test particle orbit can
have its pericenter as low as 3m’.19 The analogous
proposition is true for the drainhole model: No such
orbit has its lowest point or points as low as 2m.
Another aspect of the drainhole geodesics is that, al-
though there are unstable, bound (actually circular),
test particle orbits at p, and below, every such orbit
that is stable must have its highest points above p,
and its energy E greater than — 3 F,(y(p,),p,). This
property, reminiscent of a salient feature of quantum
mechanical models of the hydrogen atom, also finds an
analog in the Schwarzschild model.19 It is worth
noting that neither of these common properties depends
upon the presence of a horizon, as the Schwarzschild
manifold suggests it might.

In the Schwarzschild model the spatial cross sections
%, are flat, and the capture effects can be attributed to
the gravitational field alone. In the drainhole model,
however, some of the credit must go to the curvature
of space around the drainhole, for, as we have seen, the
effects persist, at short range, even when the gravita-
tional field vanishes. Thus the drainhole with the flow-
ing ether can be thought of as a first approximation to
a geometrical model of a massive nuclear binding par-
ticle. On the other hand, one can use it in place of the
Schwarzschild manifold to model the gravitational field
of, for example, the sun. In this connection one can cal-
culate that at large distances from the drainhole the
bending of orbits caused by the curvature of space re-
sults in an increase in the precessions of orbital peri-
helia that is of higher infinitesimal order than the pre-
cessions themselves. This correction to the preces-
sions differs both in order of magnitude and in sense
from the corresponding correction in the Brans-Dicke
scalar—tensor theory.20

IX. DISCUSSION

In the field equation (26), which the ether-flow, drain-
hole, particle model satisfies, the polarity of the coup-
ling between the geometry of space—time and the scalar
field is reversed from that which most physicists
accept. I shall therefore review here some arguments
in support of it, as well as one argument against it.

Justification of the coupling must rest ultimately on the
reasonableness and usefulness that the space-time
manifolds derivable from it possess as models of the
physical world. The ether-flow, drainhole model de-
rived from it has in common with the Schwarzschild
manifold the useful ability to reproduce to within cur-
rent observational tolerances the external gravitational
field of a massive, nonrotating, spherically symmetric
body. It does not have the Schwarzschild manifold’s
useless point singularity or the associated and equally
useless incompleteness of geodesics. It also, reason-
ably if not usefully, has no horizon. In place of these
dubious endowments it has several novelties of its own,
whose reasonableness or unreasonableness, usefulness
or unusefulness are yet to be determined. It ties to-
gether as two aspects of one entity the concept of nega-
tive (active) gravitational mass and that of positive,21
at the same time hinting at a universal excess of the
negative over the positive, in a ratio involving

Dirac’s outsized numbers. It stands as a clear indica-
tor that within geometrodynamics, to use Wheeler’s
descriptive term for general relativity theory,5 there
is room at least for classical models of nuclear binding
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particles, with mass and without, if one will but relax
the field equations enough to allow static negative cur-
vatures of space. Finally, the drainhole suggests a
dynamically topological mechanism for the dematerial-
ization of such particles into traveling ripples in the
fabric of space and also, because of time reversal
symmetry, for their materialization out of these ripples.

Historically, Einstein took the coupling constant K in
his field equations

R,, —tRg, =KT,, (60)
to be negative in order to satisfy the requirement that
in the quasistatic, weak-field approximation these equa-
tions should approximate the content of the Poisson
equation for the Newtonian gravitational potential V, an
equation which reads V2V = 4n(p,, + pg), where p,, is
the density of mass and p, the density of any other
forms of energy that are thought to cause gravitational
phenomena.22 Einstein carried through his argument,
however, only for the case in which the energy—momen-
tum tensor components T, arise solely from slowly
moving dust of small but nonzero proper density, for
which case p, # 0 and py = 0. If in the other extreme
{py; = 0,05 # 0) the only energy present is embodied in
a scalar field ¢ of rest mass zero, associated with the
Lagrangian density (—g£)V/2¢:<¢ ,, then

T,=0,0,— 0%, 8, (61)

and Eq. (60) is equivalent to
R[.H/ = K¢,p ¢,u' (62)

In the quasistatic, weak-field approximation V = 3(gy —
1), Ry ™ — V2V, and ¢ o¢ o ¥ 0. Thus the Poisson equa-
tion whose content is approximated by Rgg = K¢ ¢ ¢

is actually the Laplace equation V2V = — K - 0, The
other field equations approximate to 0 = K-0. There-
fore, the requirement of correspondence with Newtonian
theory yields in this case no information about K.

The failure of the correspondence requirement to fix
the polarity of the scalar-field coupling leaves one free to
apply other criteria to the task. It has seemed to me
quite reasonable to eschew singularities and aim at a
theory that will provide as a model for a mass particle
at rest and alone in the universe a static space—time
manifold that is geodesically complete and is asymp-
totic to a Schwarzschild manifold with nonzero mass
parameter.23 This criterion forces K to be positive in
the variational principle (25), by way of the following
argument.

Let us first take notice that every static and spherically
symmetric line element is a special case of the line
element (1). Indeed, every such line element can by a
coordinate transformation be brought locally into the
form

dr2? = A(R)dT2 — B(R)R?2 — C2(R)df2, (63)

with A, B, and C positive. Then a further transforma-
tion, changing only the radial coordinate, will take it to
the form (15). The latter transformation is obtained by
solving the differential equation dR/dp = [A(R)B(R)]¥/2
for R as an increasing, therefore invertible function of
the new coordinate p. Finally, by using Eq. (21) in re-
verse, we can arrive at the form in Eq. (1).
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Now let us recall that the discussion in Secs. VII and
VIII established that if ¢ = o(p), then the Euler equa-
tions associated with the variational principle (25) have
the drainhole manifold as their only solution manifold
that has a line element of the form (1), is geodesically
complete, and is asymptotic to a Schwarzschild manifold
with nonzero mass parameter, and, further, the drain-
hole is a solution only if K > 0. Finally, if ¢ =

alt,p,d, ), then one can without great difficulty see
that the Euler equations imply that in fact ¢ depends
only upon p, hence that the foregoing conclusion applies
also in this case. To summarize, then, if and only if

K > 0 does there exist a static, geodesically complete,
and spherically symmetric space~time manifold that is
asymptotic to a Schwarzschild manifold with nonzero
mass parameter and that satisfies the variational prin-
ciple (25) for some choice of the scalar field ¢, and the
drainhole manifold, with its numerous interesting and
useful features, is the one.

Against the advantages that I have set forth for the non-
standard choice of coupling polarity one must array
whatever implications it has that seemto be in disagree-
ment with established theory. The only such implica-
tion that I have met is this: According to conventional
interpretation, the scalar field, when coupled with non-
standard polarity to the geometry of space—~time, must
be accounted as having negative energy, contrary to the
usual requirement of general relativity theory.24 Spe-
cifically, with K > 0 one would say, following the usual
convention, that the energy density of the scalar field

is — Tyq as given in a physically significant reference
frame by Eq. (61). Because Ty is positive definite in
physically significant reference frames, such as local
Lorentz frames, the energy density — 7, hence also

the total energy of the scalar field, would be negative
definite, Perhaps this interpretation is correct. I have
to confess that I have been unable to conclude or to be
persuaded that the polarity of the coupling between a
nonmaterial field and the geometry of space—time should
determine or be determined by the positiveness or
negativeness of the energy of that field. I prefer to post-
pone the question, looking forward to the day when we
shall have a satisfactory, nonphenomenological unified
field theory in which there appear no coupling constants
whose polarity has to be assigned.

1t is instructive to compare the scalar-field energy Eg
in the drainhole model, be it positive or be it negative,
with the energy E; of the gravitational field. I take E;
to be the mass m, thereby remaining consistent with the
view expressed in Sec. Il and again in Sec. VIII that
true gravity is generated only by internal motions of
the ether and therefore vanishes when f = 0 (equiva-
lently, when m = 0). For definiteness let us assume
that Eg = 0. Then, after normalization by the conven-
tional factor (4m) 1,

By = (1/4n) Too(— detg,,, )"/ %%, (64)

where T is a hyperspace orthogonal to the timelike
Killing vector field 3/3T, and [x*] =[T,p, ¥, ¢], the
form of the line element being therefore that in Eq.
(15). Upon calculation of Tj4 and subsequent applica-
tion of Eqgs. (43), we have

B= LT [T s e

x ¥2(sin#)(1 — f2)V2dpd sd ¢
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nn ifm =0,
2

=\ nz _ (65)
21— exp( —"T )| itm >0,
2m (n2 — m2)V2

One sees that, as m increases from 0 ton, Eg decrea-
ses continuously from nw/2 to 2/2. Hence the amount of
energy in the scalar field is essentially proportional to
n, regardless of the amount m of gravitational energy,
and it actually varies inversely with m. If m < #, then
Eg/E;~ nn/2m. In the case of the numbers mentioned
in Sec. VII, where m was approximately the mass of a
proton, Eg/E; ~ 1019 if # is of the order of Planck’s
length, and Eg/E, ~ 1039 if # is near the classical elec-
tron radius. Here are two more occurrences of the
ubiquitous Dirac numbers.18 The large sizes of these
ratios demonstrate that the scalar field (more gener-
ally, the curvature of space) is a promising agent for
representing within general relativity theory natural
phenomena much more energetic than gravity and hav-
ing to do with particles of subatomic size.
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APPENDIX

This is a brief outline of the computational framework
used in the body of the paper. The approach is that of
Cartan.25

On the differentiable manifold M the tangent vectors

at the point P are thought of as those local differential
operators on the scalar fields differentiable at P that
for some coordinate system }x#] at P are linear com-
binations of the operators (@ /0x*)(P). The tangent space
at P is denoted by 77 and its dual, the space of tangent
covectors at P, or cotangent space at P,by 7. The
basis of T dual to the basis {3 /2x#)(P)} of Tp is de-
noted by {dx# (P)}. After an obvious pattern the ele-
ments of the various tensor product spaces, such as
Tp® 5, Tp® TP, T,8 T,® TP, are distinguished
among by use of the names cocotensor, cocontensor,
cococontensor, and so on. The elements of 7,,7, A Tp,
TpATp A Tp,--- are the 1-,2-,3-, - -~ forms.

The connection forms of the covariant differentiation
(affine connection) d on 9N, with respect to the frame

system {e } and its dual {wﬂ}, are the 1-forms {wp“} de-
termined il)y either of the equations

de, = w,*® e, (A1)
and

dwt =— w H® wk, (A2)

If p: 7 —>M is a path in M, I being its parameter inter-
val, and # is a vector field on p (that is to say,u is a
function on I, and u(t) € T#® for each ¢), then #, the
covariant derivative of #,is computed from

u = [ube, (p))'= ke, (p) +urde, (p)h
=[x +urw, < (p)ble, (p). (A3)

Let d, be the exterior covariant differentiation based on
d, defined by saying that, for every co...co- or co...
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cocontensor field V on 9, d,V is the totally skew-
symmetric part of dV. Then the torsion of d is the
skew-symmetric cococontensor field T uniquely deter-
mined by the requirement that if v is a covector field,
then

dv —d,v =T, (Ad)

where d stands for (noncovariant) exterior differentia-
tion and where juxtaposition means composition, e. g.,
@T)y,u,) = v(T(uy,%,)). The curvature tensor field
is the unique cococontensor field © that is skew-sym-
metric in the second and third slots and satisfies

d2u = Ou — (du)T (A5)
for every vector field «. In terms of {e,} and {w+},

O=uwrE® e e, (A6)
the curvature 2-forms © * being given by

- — W
O F =dot —wrAw,H

=— 3R, (w’Awh), (A7)

where the R *,  are the components of the Riemann-
Christoffel curvature tensor field = — 20). If dw* =
CHlwrrwr),and w# =T, w?, then

RK”)\II = Z(FK“[U,A] + Fxp[urlplpx) + kapc[up Al )' (AB)

Here C * | = 3(C,*, — C)*,), and similarly for other
square-bracketed pairs of indices. Contracting © in the
second and fourth slots produces the contracted curva-
ture tensor field &:

®=w® O ke, =wk®( IR, wY, (A9)

where R,;, = R, ¥, , the components of the Ricei curva-
ture tensor field (= — 2&).

If d is required to be consistent with a metric G (any
global, nondegenerate, symmetric cocotensor field on
9N), in the sense that dG = 0, and to have torsion T (any
global, skew-symmetric cococontensor field on 9,
given a priori), then d is uniquely determined. With re-
spect to an orthonormal frame system {eu} and its dual
{wﬂ}, the connection forms of d are easy to calculate
using an algorithm of Misner.26 It consists in solving
for [w,*] the matrix equation

fwelnfw ] = [(CH, — T HorA w9, (A10)
where T' = T, #, (W Aw* ® ¢,), utilizing the symmetries
and antisymmetries implied by w *gy, + W, Xgy =
dgyy, = 0. It is easiest to do this individually for each
nonzero term on the right and then add the results,
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The spectrum of the linearized Balescu-Lenard operator is studied in detail. It is found to be
continuous, to range from zero to minus infinity, and to have no point spectrum. Analytic expressions
are obtained for the /=1 spherical harmonic eigenfunctions in the velocity domain &2.5,where x is
microscopic speed, nondimensionalized through the thermal speed. Sketches showing the typical

behavior for all x of this; /-mode eigenfunction are also given.

1. INTRODUCTION

In this paper we study properties of the linearized
Balescu—Lenard equation. Previous similar works have
concentrated on the Boltzmann equation,1~3 reactor
transport equation,4 and the Fokker Planck (FP) equa-
tion.56 Wu7 has studied the spectrum of relaxation
times of the linearized Balescu—Lenard (BL) equation
by approximating the linearized BL operator with a
finite-dimensional operator through the use of Laguerre
polynomials. The mathematical properties of the linear-
ized BL equation are quite similar to those of the linear-
ized FP equation, their differences presiding primarily
in the dynamic screening contribution to the differential
and integral coefficients present in the BL equation.8
The present work follows closely the work of Lewis.5
Both Lewis5 and Suf find the spectrum of the FP opera-
tor to be continuous from zero to minus infinity. In addi-
tion, Su refers to the existence of a point spectrum. In
our analysis we find no such point spectrum save for the
fivefold conservation degeneracy at the origin. It is
shown below that the BL operator also contains a con-
tinuous spectrum from zero to minus infinity. This as
well as the form of the expansion of the BL operator in
terms of its own eigenfunctions is established in Sec. II.

In Sec.III, analytic expressions for the eigenfunctions of
the BL operator are constructed in terms of velocity x,
nondimensionalized through the thermal speed. For

x 2 2.5, these eigenfunctions are uniformly valid for all
eigenvalue A. Numerical procedures for continuation of
these eigenfunctions into the domain x < 2,5 are des-
cribed. Properties of these matching formulas are de-
rived for small A. The related eigenfunctions are rele-
vant to times much greater than the plasma relaxation
time.

Il. THE COMPONENTS OF THE LINEARIZED
KINETIC OPERATOR

The Kinetic equation which determines the time develop-
ment of the velocity distribution function of a high tem-
perature, dilute, one-component spacially homogeneous
plasma is the Balescu—~Lenard equation

oF 8nie4 9

E_mza

k k| ® ()] 26(k+ (v — )

x ([ d3ud3k -
| D*(1%] k- v)| 2

(aivs - 5%:) F(v)F(u),
(1)

where e and m are, respectively, the charge and mass
of the particles; F(v) is the velocity distribution nor-
malized so that fd3vF(v) = n, = number density; ()
is the Fourier transform of the interaction potential,
k=k/|k|;and
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Dk, Kk V)
n3e2 (k) <P' fd3 R'VuF
e =)

—in [ d3ub(k- (v —u))irqu), %)

=1+

where P: denotes that the principal value is to be taken,
This equation applies to a plasma satisfying the follow-
ing conditions: (a) n,d3 >> 1, where d is the Debye dis-
tance,d? = kT /4mn €2, while k; is Boltzmann's constant
and T is the temperature; (b) the dielectric function
D*(k, Z) has no zeros in the upper half Z plane.

Consider the following linearization of F(v, f):

F(v,t) = (ryC3/13/2)er¥C[1 + f(v)], (2)
where
C2 = 2k,T/m.

Introduce the dimensionless velocity x = v/C, insert (2)
into Eq. (1), and then drop terms quadratic in f. We
obtain

d 1 d 9 P
et (e'”P,s @) 5 — o [[arxan kR Ik x)

<ok —x)ext L), (0

where the tensor

P (x) = 5,,Q() + [p() — QU)]x %, /a2, (3'a)
plx) = (47 /x3) jox s2e-5%7(s)ds, (3'D)
Qu) =T /x) [ e T(s)ds — Lp(),

T = 81r2n0C3/w2, w% = 4mn ,e2/m (3'¢c)

and where the function

J(s) = dnt foo k3| & (k)| 2dk

o Dy, Co)I2 @

Here DB(k, Cs) is the dielectric function as determined
by the Maxwellian
Dyl Cs) =1+ B (1 _9ses® (" efar + i -+?)
bk, Cs) = k—z — 2se foedt T se
k3 .
=1+ 2z [M(s) +iMy(s)]), (5)

and
k3 = 4 e2/k,T.

Thus Eq. (3) can be written
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9 1A
¥-10,rs (6)
where GBL is a linear integro-differential operator,

Equation (6) can be studied by means of the formal tools
of functional analysis if we make certain restrictions on
f. These restrictions are that:

(a) f belong to the Hilbert space H in which the scalar
product is defined by

(flg) = [ g\ f(x)e="d3x;
(b) f satisfy
Jlrl_%l VX f(x) =0 and ;1‘1_;?0 e_-%/_z % =0.

These two conditions are more restrictive than those
imposed by physics, because f need not be in H in order
that the fluid dynamic variables be finite. Furthermore,
the conservation laws are satisfied if only

. _ . 2 of _

11(1_{16 xf(x) =0, Jl}_»rg)xe 5 = 0

If conditions (a) and (b) are satisfied, then it is easy to
show that Oy; is symmetric and nonpositive definite.
These statements hold for any J{x) that obeys

e’ J(x) < 0(x3) asx—>w, J(0)< o,

Furthermore, if the domain of definition of OBL is the
class of f's having absolutely continuous first partial
derivatives, then Oy, can be shown to be self-adjoint,
The evolution operator exp (tO ;) will be a bounded opera-
tor, and, as a consequence, cond1t1ons (a) and (b) will be
preserved in time if they hold at the initial time and if
the inhomogeneous driving term (if any) in the kinetic
equation can be represented by a function which is an
element of H.

Since all vectors in the expression for the operator OBL
are integrated out except the independent variable x,
OB ; 1s rotationally invariant and hence can be reduced
to the spherical harmonic subspaces. Thus we may
write

fx) =7, )k),

where Q_ is the polar angle of x referred to an arbitrary
reference frame and x = |x|. We then may write,

OBLYlm h = Ylm(ﬂx )a_BLh

where 531, is an integro-differential operator in the
single variable x.

It proves convenient to make the additional change of
variable

hix) = (e72/x)y (x)
so that
fx) =

The kinetic equation for y becomes, upon nondimen-
sionalizing the time through r,

+ [T K, )y (s)ds, (D)
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or

5 ~
%zozy- (8)

In Eq. (7) p and Q are given by Egs. (3) and (3’), and

V) = (3—x2p +x —x D) L+ avT ). (9)

The kernel K,(x, s) can be written

Kl(x, s) = 3JTTe-(x2+s2)/2

/2
X <Gl"_(s)®(x-—s) +G"‘(x) 6(s—x)>, (10)

n=m x2n s2n
where
‘1, x>0 0, for even!
ek) = ’ min = §
0, x<0 3z, forodd!
and

G (s) =4 (—% (s + Z;)sz"J(s)

Lz AlnAlk

+ ‘[nE'h(2n + 2R — 2,5)

k'=ngin S
+(n +EYh@2n + 2k, s) + R(2n + 2k’ + 2,3)]).

Here (11)
hv,s) = Lsz”J(z)dz, (117

and the A, are the coefficients in the Legendre poly-
nomial
i/2

Pl(x)z Z)

k=nmin

2k
x28A,,.

With the change of dependent variable as given above,
the function y is in L2 space on (0, ©). The boundary
conditions on y become
lim x‘1<y +x71 512> =0 and lim % =0. (12)
X200 dx 0 Jx
In order to proceed, we must evaluate the function J{(x)
given by Eq. (4). With &(k) = (272k2) 1 the integral indJ
diverges at the upper limit. To obviate the (logarthmic)
singularity, 9 the integral is cut off at k,, = £,T/e2,
whose inverse is the distance of closest approach of a
particle with energy #,T and zero impact parameter to a
potential e2/r.

The integral in J is evaluated by choosing the appro-
priate contour in the complex #2/kZ plane to obtain

Jx) = iln <(M1 IR M%) M [arg (—Ai + i)
| M,

M2 +M§_ 2|M,
Ml +rI2
—arg [———— + ||, (13)
| M,
where
arglre®y=6, 0<argZ<2m,

and
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J/;

. 3
= % 4 d >1.

We see from Eq. (5) that
M| <0@), Myl S o),
and for x > 2
Myl /iM, | >> 1,
Thus, since I" > 1,

x -0,

Xz 2,

f In" — 3,

Jx) ~ o
) llnI‘ + Inx + 7 ex?/x3,

(14)

Redefining InT" slightly so that In[" — 3 — InT", Eq. (14)
can be approximated by the tractable formula

J) = InT + L7 xex®/(1 + x4). (15)

The specific nature of the interparticle interaction is
contained entirely in the J function of Eq. (4). If we
were to put Dy = 1, the integral would then have to be
cut off at & = k as well as the upper limit, and we would
getJ = InT". Equatxon (3) with this J would then be just
the linearized Landau equation. If we were to set Dy =
1 + k2/k2, we would obtain the Landau equation corres-
ponding to the Debye potential of interaction v "¢ D" he-
tween particles. This Dy would give J = InI". The
Balescu—-Lenard equation includes effects of the finite
response time of the screening between particles. Using
Eq. (5) for D, thus gives (approximately) Eq. (15) for J.

It can readily be shown that the number, momentum, and
energy densities are conserved (for a spacially homo-
geneous system) by Eq. (3) for any J{x) function which
has the property,

e % J(x) < O(x"3) asx - ®,

Using Eq. (15), we can now evaluate the functions p, @,
and V defined in Eqgs. (3):

Vi ex? T
plx) = 2V Inl" (E;; erf(x) — —2) + o In(l + x4),

x
(16a)
and
_ #lnl b T 2
Q) = —— erflx) — 5 + z-arctanx2, (16b)
As x — «©, we have
px) ~ ﬂl;ll"x . V) ~— nlnI’x’
2
and Q) ~ M (16¢)
x

Il. SPECTRAL PROPERTIES

We now study the spectral properties of the operator Ol
[defined by Egs. (7), (8)]. The limit points of a self-
adjoint operator are unchanged if we add to it a com-
pletely continuous operator.1® In order to apply this
theorem to the study of O,, we must show that the kernel
K, is square integrable (and hence the integral operator
is completely continuous), and then we must study the
spectrum of the differential operator alone. The latter
is continuous from zero to minus infinity. Consequently,
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the spectrum of O, is continuous from zero to minus
infinity.

Before so proceeding, let us set [see Eq. (7)]
Oy=D +K)y=Dy + ]Om ds K(x,s)y(s). (16d)

To show that
0Q
L7 1B Gx )] 2axds < o,

we note that the least convergent terms in this integral
come from the large x behavior of J(x). Near the origin
(x = 0,5 = 0) J — InT'; hence K/(x, s) for x,s = 0 goes
over into the “Landau equation” form, which is already
known to be square integrable near the origin. With
h(v, s) given by Eq.(11’) we can see that, for large s,
By, s) ~ Lsv-degs?,
Thus for large x, s the largest terms in the double sum
given by Eqgs. (10) and (11) are

s s 1/2
Kl(x,s) ~ g x™s®)2 3

7 2min

22-2 582 2n~2px?

N e x

X Cln 0 (x —5s) +___i_
x2n 32n

(s -x)), (17)
where the C,, are constants. Thus, since

(f)zne(x —-s5)<1,

%
K x, ) < (s‘ze‘x2/2+52/2 O —s)

s o 2
+x72¢7s /2+x%/2 9 (s __x)) b ‘cln‘ ,

n=Epmin

(177a)

and, for a > 1,
QOO a2 .d
5k | K (x,9)|2dxds = [ [ 1K (x, )| 2dxds

+ 2 faoo dx j: K (x, s} 2ds + f:ofaw | K (x, $)| 2dxds.
(17'b)

The first term on the right in Eq. (17'b) is convergent.
In the second term we have x > s for the entirety of the
domain of integration, so that from Eq. (10) the function

a 9 e‘xz
j(; le(x,s)l dsocW’ x> 1.

in

The last term, by Eq. (17'b), is

0 00 /2 2
) IKl(x,s)lzdxdss2< b |cln|>

a -
n—nm

s4 s

eceszds w 5 l/2 ds
xfa fsexdxs2<n Yol f’o - < .
mn

Thus the kernel K (x, s) is square integrable over the
upper right xs plane.

We now show that the spectrum of the differential opera-
tor is continuous from zero to minus infinity. The study
of the spectral properties of the differential operator is

made with the aid of the theory of symmetric differential
operators on an infinite domain.1l We may summarize
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the relevant resulis of this theory in the following
theorem.,

Theovem: X the differential operator, defined on
0 = x < @, can be written in the form

Ey = (py')+qv, withp{x)>0,

and, if it is of a certain type (defined below), we may
write the following expansion of any square integrable
function on [0, ®]:

2
@)= T[T o060 dp0) [T ¢4, 0)(s)ds,  (18)
j.k=1 o 7 0
where
{a) The set {q) } are any two linearly independent solu-
tions of
Z¢ —rp = 0.

(b) The matrix function p, k(J\) is of bounded variation
and pjk(h) p;k(u) is nonnegatwe deflnxtf HA>p. py

satisfies pJ,,(A) p]k(,u) lim g+ 772 f Im },,(v +ieMy
at points A, u of continuity of [

(187a)

{c) The matrix Mk(x) is given by

My, =[moA) —m ]2,

Mig =My, = 3[moQ) +m_ (N)]/[mo()
My, =mMm (A)/[my() —m ()],

—m_(M)], (18'b)

where, finally,

(d) With Imx = 0, m,(2) and m_,(A) are those unique
coefficients having the property %that I4>1(x A) +

m ()b ylx, A 2dx < w0 andf [o,, A) +
m (M@, (%, A)] 2dx < 0 with @ an arbitrary finite number.
This completes the statement of the theorem.

The type of differential operator referred to in this dis-
cussion is that having the property indicated in (d),
namely, that, for Imx = 0, only one linear combination

¢ of ¢, and ¢, has

J71¢12dxe < e,
and only one (in general not the same) has

j:!¢]2dx<00.

The differential operator ﬁ may readily be shown to be
of this type by considering the asymptotic form of the
solutions to D¢ = x¢ near the origin and at infinity.
Near the origin there are two solutions which behave as
x~? and x*1, and the asymptotic solutions for large x
behave as

( 3)1/ ex iN——?\f
InTx P vpisi

(For I = 0, both solutions are square integrable at the
origin, In this case we impose a homogeneous boundary
condition at the origin and the above discussion is re-
placed by the simpler theoryll of a differential operator
with a singularity only at infinity.)
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As just shown, the operator ﬁi satisfies the hypotheses
of the above theorem. In order to use this theorem to
investigate the spectrum of ﬁl, it is necessary to cal-

culate the components of the matrix function p e

The components of the related matrix M,.(A) may readily
be calculated using Eq. (18'b).5 For each’) in the inte-
grand of Eq. (18}, the two functions ¢, and ¢, are any
linearly independent solutions of Eq.(18’a). If we choose
] 2(x, A) to be that solution which behaves at the origin as
¢4 > x¢*1, then m 4(A) = © and hence the matrix

0 0
_1 .
(O mm(,\))

As x — ®, a phase integral analysis shows that

1r‘11mM = lim

dp., = lim i
Pir = ot mAs0*

3\1/4 * ds
X, A) A ad ) cos(J«—A )
¢2( N }‘(lnl‘x % p(s)
One calculates that
(A2 —x)1 Rex< 0
Immw()\) = 5( A r € ’
10 Rex > 0.

The spectral density is

= (FAZ/R)L.
Thus Eq. (18) becomes
fo) = 71 fijf_A%y(x,mf Y5, 0f(s)ds,  (19)

where v (x, A) is the eigenfunction of D which is regular
at the origin and has the eigenvalue A,

The function 4, is the asymptotic amplitude of that solu-
tion which started out at the origin as x*1, Clearly 4,
is a continuous and nonvanishing function of A on any
finite interval of the negative A axis. This means that
the spectral density dp/dx neither vanishes nor is sin-
gular for A < 0. Thus in particular the spectrum of the
differential operator has no gaps (vanishing of dp/dA).
Therefore, the above referred-to theorem relating to
the limit points of a self-adjoint operator tells us that
the spectrum of the full operator has no gaps from zero
to minus infinity and is empty on the positive x axis.

A. Absence of a point spectrum in 0,

In this section we will demonstrate that §, has.no point
spectrum, save for the fivefold conservation degeneracy
at A = 0. An eigenvalue is an element of a point spec-
trum if the corresponding eigenfunction is in L 2,12

The argument is as follows. Lety be an eigenfunction of
O,; that is, suppose
Oy —ry =0, lim(y/k)=
Because of the nature of the integral operator, the equa-
tion
Oy —ay =0

can be converted into a pure linear differential equation
given by AWMy = 0, where N is the order of this equation.
However,an arbitrary solution of AWMy =0isnota
solution of O\If — A¥ = 0. We will show that if y(x) is
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required to be square integrable, this generates more
constraints than the number of linearly independent solu-
tions of AMV¥ = 0,

Consider first the case!/ =0 or! = 1. Thenn ; =1/2,

and Oy may be written in the form

~

0y = y + 872 (x) f &(s)y(s)ds + 8r2g(x)

x [T f(s)y(s)ds, (200)
with g, and f; implied by Eqs (10) and (11).
The pure fourth-order differential operator obtained
from Eq. (20a) is

AW = E@©, — ), (20b)

where, for arbitrary F,

EF =g{((g/NTAE/MY.

Since E{af + bg) = 0 (subscript I has been dropped from
f; and g)), it is clear that if x is an arbitrary solution of

A@)y = 0, then (0, — A)x = af + g, where o and B are
constants.

If one sets
4

y = E Ai‘I’i)
i=1

where the set {¥,} are four linearly independent solu-
tions of A4)¥ = 0, then, for y, so written, to be an exgen-
function of Ol, it is necessary that

4
E =

and

(21a)

M.&
”

(21b)

where o, and g; and defined by
O -N¥ =0o,f +82.

Equations (21a), (21b) impose two constraints on the 4,
coefficients. Two more constraints result if we demand
the eigenfunction y to be square integrable at the upper
limit. As will be seen in Sec. 1V, for large x, two solu-
tions of AM)¥ = 0 behave as

. £3/4 < )
> 2 ex
{InTx)1/4 P \/

Both of these solutions must be eliminated if the eigen-
function is to be square integrable. Finally there is a
fifth condition, related to the symmetry of 0,, which must
be imposed on the 4;, namely, the boundary condition
[Eq.(12)]

lim (y/V¥ ) = 0.

There are five homogeneous conditions on the four un-
knowns A,, and the A, are overdetermined with no remain-
ing free parameters. This completes the demonstration
that for I = 0 and ! = 1 there is no point component to

the spectrum for finite A.

The proof maintains for arbitrary ! because the integral
operator is always of the form of a finite sum (from
Eqs. (10) and (11),
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N
f K (x,s)y(s)ds = 8n2 Z“l,

x (fjl(x) fo 8,(s)y(s)ds +g,(x) fxmf,-I(S)y(S)dS).

Each differentiation executed to obtain the pure (2 +
2N))th-order equation carries with it a condition which
is the generalization of Eqgs. (21a), (21b). With the boun-
dary condition at the origin, Eq. (12), one always obtains
one more homogeneous equation for the A4, coefficients
than the number of unknowns. We note that the square
integrable function which Su® constructs, while a solu-
tion A@)¥ = 0, is not further constrained to be an eigen-
state of 0.

B. Expansion theorem for 0,

Now we will prove the expansion theorem for the integro-
differential operator O,; that is, we will show that an
equation of the same form as Eq. (19) holds for the
operator 0

Consider a sequence of operators O which converge as
n— o to O and which have the same dlfferentlal opera-
tor as O but whose integral operators are truncated:

N,
O y + 8120 (x — a,) Zl>1}3»l(x)
j= N,
xJ , uS)3(6)ds + 872008, —x) ) g, ()

xfx fu(s)y(s)ds. (22)
Asn — o, we suppose o, — 0,8, = ©. Then the sequence
0,, and the operator O, all have the same domain of defi-
nition (smce each O dlffers from O by a bounded opera-
tor) and 0 - O Thus the sequence . and the operator
O satisfy a theorem13 according to whlch the projection
operators P1.2) which project onto the portion of the
spectrum of the self-adjoint operator Ol lying between
A; and A, converge to P{1.2), which is correspondingly
defined with respect to O,.

The expansion theorem, Eq. (19), can also be proven for
0,,,. This is because Green's formula, here written as
%3 , Xy
f dx(x0, ¥ —¥0,,x) = [(x¥ — ¥'x)P]l,;,
holds for O as long as the end points of mtegration
(x1,%5) both lie outside the interval [a,,8,]. (In prac-
tice,11 the end points would straddle the mterval

[2,,8,]). By the theorem referred to in the preceding
paragraph, one therefore can assert that the sequence

Hay 00
(PADf|PA2) = _ﬁ T Az ”‘d_;Az I L M CH )\)f(s)dstz
1 - N
(23)

converges. Choose f so that it is square integrable and
vanishes.outside some interval [a,b]. Let # be large
enough so that ¢, < a,8, > b. Then the eigenfunction

¥, of O,, can be written, for a <x < b,

3,0, %) = E B, (M¥(x, ), (24)
where ¥ (x A) are the four linearly independent solutions
of AW ¥ = 0, The amplitude A , is determined from the
B,; by matching the zeroth and first derivatives of y at
the point x = 3,. It follows that the integrand in Eq. (23)
is thus a continuous function of the four variables B,;.
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The sequence of integrals in Eq. (23) converges. By con-
sidering the system of equations which determine the
coefficients B,;, these latter functions (of 1) converge
also. If the sequence of integrands in Eq.(23) converges
uniformly on [x;,2,], then the limit integral will be
given by the integral of the limit function. The sequence
of integrands will converge uniformly on [A;, A,] if the
sequences B,; do.14 But these latter coefficients are the
solutions of a linear inhomogeneous system of equations
whose matrix of coefficients converge uniformly on
[A1,1,] (see Appendix). Therefore, the integrands in Eg.
(23) converge uniformly on {x;, x,] to the function

11
v—x A2
whose integral from Xx; to A, equals the limit of Eq.(23).
Thus it has been shown that the projection operator onto

the portion of the spectrum of O, lying between A, and
Ay Can be represented

|7 yls,0fte)ds |2,

X

fwy(s,)\)f(s)ds’z.

(pazy|pavys) =L [ [

2 dx )
T M J—X A2
Putting A, = 0" and A; = — ®, the above equation states
that the norm of f,, where f, is the projection of f onto
the continuous spectrum, can be written

_1 0 ax w0
SAVAESN J_—_T—A%UO y (s, Mf(s)ds|2.

From this it can readily be shownl5 that the expansion
of any square integrable function f into “eigenfunctions”
y(x,A) of O, can be written

flx) = Zyi(st =0) (flyi(A =0p

1 0 dx ylx,A) (o
+ = —_— e dxf(x)y (x, x) 25)
-l AEJO fx)y @, N, (
where A, is the amplitude of the asymptotic expression
for large x of the eigenfunction which goes as x!*1as
x = 0. This completes the proof of the expansion theorem
for the operator O,.

V. The Eigenfunctions of O,, / = 1

Having uncovered the nature of the spectrum of J,, we
now turn to its eigenfunctions. These eigenfunctions
are germane to the initial value problem related to the
equation

PN

1

010 e - » X
T
REGION I PR
(NUMERICAL
TECHNIQUES)

REGION I

(PHASE INTEGRAL
TECHNIQUES)

REGION Ir

( PHASE INTEGRAL TECHNIQUES
USING ITERATION)

FIG.1. The regions of the xA plane used in the numerical

and analytic studies of the eigenfunction.
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2y

=0y.

We consider the special casel=1.

For x and X small, one must employ numerical tech-
niques to construct y(x,A). Phase integral techniques
come into play in the complimentary region of the xa
plane. (See Fig.1)

The boundary between Region I and Region III is denoted
by L. In Region I the following numerical procedure may
be employed. On a certain set of values of A lying be-.
tween 0 and A, the range {0, L] is divided into N panels.
In the ith panel the eigenfunction is approximated by a
gquadratic

Alx —x;)2 + Bix ~x;,) + F;,

where x; is the left boundary of the ith panel. The A, B,
F, are constrained so that the zeroth and first derivatives
match at the panel boundaries. Further equations for
these coefficients are obtained by inserting the ordered
set of quadratics representing the solution into 0, Y —~ Ay
and then requiring the result to be zero at one point in
each of the N panels. Because of the nonlocal nature of
the integral operator, the coefficients which represent
the function in Region III will enter into the system of
linear equations. These coefficients (in Region III) are
in turn determined by the zeroth and first derivatives of
the eigenfunction at x = L. The linear inhomogeneous
system of equations for A, B,, F; and the coefficients in
Region III are a closed system, It is inhomogeneous
because we impose the conditionl6y - x2 ag x - 0 so
that A, = 1,B, =0,F; = 0.

In Region III, phase integral techniques may be used to
obtain expressions for the eigenfunctions. The validity
of this technique limits L to being no smaller than about
2.5,

First we will rewrite some of the pertinent equations
and define some new functions. It is readily shown from
Egs. (10) and (11) that for I = 1 the function g, and f4,
introduced in Eq. (20a), can be written

fl = ﬂ‘3/2e‘12/2/x’ (26)

g, = =2 (- (1 + 2x2)J(x) + % fox @2 + %)ZJ(t)dt) .(26")

Just as the function J{x) [Eq. (15)] can be written

J =1l +4J,(x),

where J, is due to the dynamic screening contained in
the dielectric function, so can g, (x) be written

g, =4, +gc’

where
g, = e**/2(3x% — §x2)1nT, (27a)
g ~ (n/ax3)e="/2, {(27v)

The functions g; and g, result from using InI’ and J, res-
pectively in place of J in Eq.(26’). Equation (27a) is
exact, whereas Eq.(27b) is an approximate expression
valid for x 2 2.

Rewriting Eq. (20a), with its right-hand side set equal to
Ay, in the form
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4 (D 2R 2 ¥
L)+ (v-a-2)y +urene e

+ 812,00 [” f1(6)y(s)ds
=— 812, (x) fOL g,(s)y(s)ds, (28)

and then dividing this through by p, we get

’

P , 8n g i
YV EFI Y +1nrpfg1 mrpf fyyds
8nf L
__(fﬁf‘-)%fo g1yds, (29)

where

P(x)= (1/rInD)plx), L, 2) =(1/pNV — A — 2Q43).

By using Eq.(16c) and neglecting g;(x) in comparison to
g.(x) {for x > L), Eq.(29) becomes approximately

» 1 AR (7 2_3_1’599.)
yroe (3-8 v e (R oz -2,

+ el)x2ex"/2 fo ”Li- es’2y + e(x)e*’/2 fx°° s g-s2/2
N s

_dex) o . 2p
=~ —tx2gx s)y(s)ds, 30
= fy £1)y (30)
where
€(x) = 2/InT'x, ofx)= (InI'x)/InI', v =—A/7lnl.
Let
a d2 P’ d
D=-"—+"—"Z=+EK,A (31a)
Wz P Elx,A)
and 87 1 8
R T fy ox L5
Iy :iﬁ-—P—nglyds +1—n-r—-73— _foflyds‘ {31b)

The operator T here is related to K, defined in Eq. (16d):
I=(1/p)R,. (32)

With these relations and definitions at hand it is con-
venient to indicate the process by which the solutions
of AT =0 [see Eq. (20b)] may be found approximately.
The four solutions to A@)¥ = 0 come into play in match-
ing the solution at x = L. One assumes solutions of
A = 0, of the form e?, where d¢ /dx behaves essen-
tially as x to a positive power. Reference to Eq. (30)
indicates that in Region III the integral operator I car-
ries with it the small quantity €{x). Therefore, the inte-
gral operator K acts as a small perturbation to the form
of the eigenfunction in Region III. Because of the per-
turbative nature of the integral operator I, two solutions
of A@)y = 0 are only slightly displaced from the two
linearly independent solutions of Dy ~— Ay = 0, The
correction is found quantitatively as follows: (a) Insert
the functiony ~ ¢? into
(D+Dy =0. (33)
(b) the one integral in Eq. (30) in which the derivatives of

both ¢ and + $2/2 have the same sign are approximated
as follows,

2/2+0
Lx S(s)e® ) /2 dg e /2%s (34)
(0]

ppts %
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where S{x) is smoothly varying and where ¢, is the
phase in the corresponding solution of Dy — Ay = 0.

(c) The alternate integral to that referred to in (b) is
“eliminated” by one propitious differentiation of Eq. (33).
This, in combination with the results of (b), gives a pure
third-order nonlinear differential equation for the phase
¢(s). (d) This equation is solved approximately by writ-~
ing ¢(s) = ¢(s) + n(s), linearizing the resulting equa-
tion in n'(s), and solving the resulting (algebraic) equa-
tion for n’(s). Change of independent variable to

) = fx‘ JV=EG) ds

renders this process a bit clearer.

(35)

The results of this analysis? 7 are that two solutions of
A@¥ = 0 are approximately

‘I, 1 < " € P )) -1/4
= —— ——— X
L2 0P X(V=C +x) 3
x 1/2
xexp ¥ [ ds|— ( R (s))] %,(36)
P f"x [ J s(W=2C€ +s) 3
where
2 ,x%/2 x €(s)ds .=
Fl(x)-N-————x ¢ — [ === /Z\Illo(s)
\I’lo(x) *o s3
x2/2
e vt (x VF
-+ __}.9__9_._0 , (36'3.)
x%a(xo)
. x2/2
¢ €(s)ds g s?/2 Fools), wx3 22,
¥, o) * s
Fz(x) = 1 -
( —4—3¢, vxd3K 2and v < L1,
(36'Db)
and
root of {(x,A) =0, if v<L-1,
X, = . (36'(:)
L, if v>L1,
and

1 _ X —
W%S(x) :7_5 ¢ 1/4exp <¢ fx)\ de/——§>.

It can be shown that F'; and F, both satisfy first-order
nonlinear differential equations. In order to define a
solution to either of these first order equations, it is
necessary to specify the value of the solution at one
point. For the case of F, we specify F,() = 0. For the
case of F'; we specify F;{x,) = F ;. The point x, and the
value F'y are in principle arbitrary but analysis shows
that we may be guaranteed that F'; will not diverge if we
choose x, = (4/x)}/3 and |F,| = Yoe. m fact, if we
choose x, = (4/A)1/3 and F0 = 0, then the solution F

will be of order € in magnitude for all x.

For vx3>> 2, F, and F, become equal,
Fy > Fy—>—¢/x(Y=C —x),

so that, for vx3 > 2,
1 %€ -1/4 g x
V, > —-—= [— +— exp <¥F ds
y 7B { (g © +x2)>] T

2¢ 1/2 ,
x[~<(+c+sz>] } (36'd)
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The significance of the number L1 in Eq. (36'c) is that
the root of ¢(x,A) = 0 goes roughly as v'1 as v— 0, so
that for v 2 L1 there are in fact no roots of Elx, )
greater than L. We thus have in Egs. (36) expressions
for two of the four solutions of A®)¥ = 0 on one side
of the turning point x, and two solutions (not the same)
on the other.

We now discuss the connection of the phase integral
solutions about the turning point. On each side of x,,
Eq. (36) represents two solutions of A4)¥ = 0, These
two solutions together with the remaining two solutions
on one side of the turning point connect in some manner
to the corresponding set of four solutions on the other
side.

It is possible to obtain expressions for the remaining
two solutions of A(4)¥ = 0 by a process similar to that
used to abtain Eqgs. (36).18 In this method, one makes
the change of independent variable,

T) = [ (s2)1/2ds = 3x? — x3). (37)
0
It turns out that two solutions sought are of the form
S(x)erx*/2, (38)

where S is a slowly varying function of x, In addition,
with the change of variable given in Eq. (37), the said
technigue of solution gives no divergence at point x,, in
contrast to the situation with the two solutions in Eq.
(36).

On each side of the turning point x,, let the four solu-
tions of A®)¥ = 0 be denoted by ¥,(x), i = 1,...,4, with
¥, and ¥, given in Eq. (36) and with ¥, and ¥, the exact
solutions of A @ ¥ = 0 which behave as e*%/2 and e**2/2,
respectively. An eigenfunction y (x) will be expressed

in Region III as a sum

yx) = 'Yl(x)‘l’l(x) + Vz(x)\l‘z(x) + 73‘1‘3(96) + 74\1’4(")'

The parameters vy, (x) and y,(x) are constant on either
side of the turning point. The coefficients y5 and y 4 are
constant for all x since ¥, and ¥, are exact solutions
of AMY = 0. It can be shownl? that the relation be-
tween the values of y; and y, on either side of the turn-
ing point are such that two solutions, y, andy, of the
equation

Oly —Ay =0,
are given by
'é'(‘l’]_ - i‘l‘g);

(39)

LR PRI PRt 2 St ZEal 7 ot Pl
A

<< >>
X <<x LR

Yy oy — ¥y —y B, > — il + ¥y,

where b is undetermined and y {13,y f1),{2), and y {2)
are determined by Egs.(21a) and (21b). The solution to
the connection problem is thus given by Eq. (39).

In order to construct the eigenfunction on its complete
range [0,00], it is necessary to match the solution and

its first derivative at the boundary x = L. In this cal-
culation we choose the four linearly independent solu-

tions of AW ¥ = 0 to be W;(x), i =1,...,4,where
Wi =¥, W,y =¥,

and
Y, to¥, & W, - %(‘1’1 —il,),

x <<X)\

Y, — Wy —~i¥ + ¥,

x >>XA

(40)
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The eigenfunction is then written as
4
yle,2) = El AW (x, x). (41)
iz
We can show that A, = 0. From Eq. (21b) we have
3
Ag==B3 2 ABy. (42)
i=

Next we note that 8, = 0 for i = 1, 2, 3, as can be seen
by taking the limit x > x, in Eq.(29), insertingy =

Wi, W, or W5, and noting that the results do not contain
terms which grow as e**/2 ag x - ©, On the other hand,

B, is in general not zero. Thus Eq. (41) reduces to
y =AW, + AW, + AW, (45)

Lety, and w, be the value of the function and its first
derivative, respectively, as determined numerically in
Region I. Then, with A, = 0, the three remaining coeffi-
cients are determined ‘{)y the three equations

AW (L) + AW, (L) + AW, (L) =y, (46a)

AWI(L) + A WhH(L) + AZW4(L) = w,, (46D)
L

Ajey +Ay0y + Agey =— 81211 (L) [ £,(s)y(s)ds,

where (46¢)

¢ =D,wl, , + 8n2g, (L) .Cofl(s)Wi(s)ds — AW,

(46d)
From Egq. (36) we see that W, and W, are respectively
WKB solutions of

€ ——
R I VI e x>) e =02

so that ¢; and ¢, are

- €
=0 (F®) * i) M

+ S“Zgl(L) f;ofl(s)w(%)(.?)ds. (469)
If vL3 > 2,then
ot TR
@) Lt @ FVSED))
Equation (46¢) is equivalent to Eq. (21a) in which

(46£)

@, = 872 fOL dsg,(W(s) + ¢;/f1 (L),

where W;(x), for x < L, is the extension back into Region
I of that solution of A®)W = 0 which is W;(x) in Region
III. Equations (46a), (46b), (46c), together with the defini-
tion in Eq.(46d), imply a complete expression [Eq. (45)]
for the eigenfunction in Region III.

These formulas may be used to obtain a more explicit
expression for the eigenfunctiony for v < L-1 and

x 2> x,. From Eqgs. (36) and (40), we see that, except for
the small range in v where x, is close to L,

Wi (L)/W,(L) i

-

x(\/—-t;' TF; +vV=¢ +F2)ds)>> 1.
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Also, from Eqs. (46d) and (46f), we have

C(%) = O(E)W(%)(L)r Cq = 0(1)W3(L)'

1t follows that for v < L-1, to zeroth order in ¢, one
obtains

Ay ey oWhp —woWy ) + KWy Wy, — Wy Wh,)

A, ey Wiy —woWy,) + KWy Wy, — WsLW'u)(4 )
7

where
= — 8177, (L) [ g(s)y(s)ds.

From Eq.(47) we see that

4o <W2(L)) <1
A, W, (L)

in the domain » < L1, Therefore, the asymptotic form
of the eigenfunction is

9 x3/4
x> "2 yg(x)]1/4

x 2¢0 1/2 7;]
ds [— ¢+ —— — = 1. (48
xcos[L}\ s( ¢ vs3-—2> y (48)

y(x,v)

From this we find that the function A, appearing in Eq.
(25) is just twice A,(v)/v1/4 which is determined by Eqgs.
(46).

In the extreme limit v — 0, these relations give a more

explicit expression for A,. The qualitative behavior is
given by the zeroth order in € expression:

_P) df o K Vs
AZ*TW:L(L) wo"—a—; yon 1 E;lnﬁqle, ’
(49)
where
€3 = kaWa(L).

Equation (49) shows that A, diverges as v— 0,

Ay(v) ~ exp(f;_l Ny 3= ds) .

With reference to the expansion theorem, this means

that for a fixed but arbitrary square integrable function
x the relative contribution to the eigenfunction synthesis
of x between 0* and v = p goes to zero proportionally to

exp (~_ 2 fL K N ds>

as p - 0. In conclusion, we note that for v > L-1, the
functions W, and W, are complex, but naturally the solu-
tions to Eqgs. (46) are such that the function

y =AW, +A,W, + AW,

is real, The function A2 in Eq. (25) for the case v> L1
is given by

1
Vv

This completes the discussion of the matching of the

A2 == (14,12 +]A,12 + A, A, +A,4,).
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analytically determined solution to the numerically
determined one at x = L.

Next we consider the construction of the eigenfunctions
of O, in Region II. In Region II, the eigenvalue v = — 2/
7inT is large enough so that

(tv') + (V + vlnI‘-2—§~) y +8r2f {x) Lx g,yds
x

+ 8n2g, (x) f:oflyds =0 (50)

can be solved by iteration. In this method the action of
the integral operator on the solution is considered smalil
compared to that of the differential operator. Therefore,
the zeroth-order approximation is a combination of the
two solutions of

by =(py’) +(V + nyvInl’ — 2Q/x2)y = 0. (51)
Denote these by W, and W,,. We write

y=AgWor +AgpWes +9,
and anticipate |y, | K |4y Wy, + A5, Wial .

The basis of the iteration procedure is that for large
enough v the functions Wy, and W, oscillate rapidly
enough so that the effect of the differential operator in
Eq. (51) on these functions is much larger than that of
the integral operator. The function Ay;Woy + AyoWyo
is inserted into the integral operator. Denote the re-
sulting function by H(x). Then the eigenfunction y{x, )
is taken to be the solution to the inhomogeneous equation

ﬁy—'z\y =H

subject to the condition ¥ (x) — x2 as x —» 0. This will
determine the constants 4,y and 4 ,.

An analysis for I = 1 based on the criterion that there
should be at least one “wavelength” in the oscillation of
Wi, or W, in the region 0.5 <x < 2 shows that v
should be larger than about 30 for this iteration to be
valid,

For x > L this procedure gives the same result as the
phase integral plus matching method used for Region II.
This is because for large v the difference in phase be-
tween the arguments of the circular functions in W,
and W, and those in Eq. (36) amounts to

Toe ds o 20

L ys3 Jys3 qu3fer /e

The conclusions concerning the qualitative behavior of
the eigenfunction for two different values of A are illus-
trated in Fig. 2. In Fig. 2(a), » is small enough so that
not only is the point {x, 1) in Region I or III (depending on
whether x is less than or greater than L), but the turning
point is also in Region INl. In Fig. 2(b), A is large enough
so that iterative procedures relevant to Region II are
employed.

CONCLUSIONS

In this paper properties of the linearized Balescu-
Lenard equation which form the foundation for further
physical application have been developed. The spectrum
has been demonstrated to be continuous from zero to
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minus infinity, and to contain no point components aside
from the fivefold conservation degeneracy at the origin,
The expansion theorem for 0, in terms of its own eigen-
functions was proved. Finally,the analytic and numeri-
cal procedures for approximating these eigenfunctions
for the special case! = 1 was discussed,
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APPENDIX: PROOF OF UNIFORM CONVERGENCE OF
ELEMENTS OF THE MATRIX WHICH DETERMINES THE
COEFFICIENTS OF ¥;(x)

The solution y,(x, 2) given by Eq. (24) is a certain linear
combination of the solutions of the pure Nth-order
differential equation A®y = 0. The coefficients of these
solutions are determined by a linear inhomogeneous
system of equations, whose origin is described in the
text. We will show that the elements of the matrix of
coefficients in this system converge uniformly on [, 2,].

Let ¥,(x) be the N independent solutions of AWM ¥ = 0.
An eigenfunction y, of 0, [see Eq.(22)] has the form

Cud1®) +C,00,(x) x<a,
N
V(%) = Z}l B, ¥,(x) a,<x<B8, (A1)

C,3¢,x) +C, 0,0x) 8,<x

The functions ¢, and ¢, are those solutions of f)l¢> =0
which behave at the origin as x~! and x!*1, respectively.

The N coefficients B,; are determined as follows: (a)
The zeroth and first derivativesof y, match atx = o,
and C,, is set equal to zero. (b) The eigenfunctiony, is

(Cl) y(x.)\)
t
2
,‘2ex/2
xl+| : yc.m
|
f
1 1 A 1 —»x
0 | 2 L 3 Xy
g el
NUMERICAL APPROXIMATION
)y (x,2)
[
y
U asm
e AN
o] - L »x

FIG.2. Sketches of the I = 1 mode eigenfunction of the Linearized
Balescu-Lenard operator in Region II and in Region I-III. Here

Yasm ™ cos(Vvx5/0(x) + 9,), where 6, is a constant phase factor. (a) In
Region I the solution is obtained by numerical techniques. Thx.s solu-
tion and its first derivative are matched to those of the phase integral
solution in Region III. The turning point x, in the case depic.ted here
is in Region II. (b) In Region II, the eigenfunctions are obtained by
using a phase integral and an iterative technique.
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assigned a definite value at a given point Xy Where
a,<x,<B,. (c) These two constraints together with
Egs. (21a) and (21b), or their N - 2 analogs for I > 2,
determine the coefficients B,;.

We will show that the elements of the matrix which com-
prise the above inhomogeneous system of equations
converge uniformly as n — © on any finite interval of

the A axis which does not include the origin A = 0.

The equation A V¥ = 0 has a regular singularity at the
origin x = 0. Consequently, the N solutions ¥,(x) of
A = 0 can be expanded near the origin:

<

¥, 212:/0 x% +jyij(lnx),

(A2)

where y,;(z) are polynomials in z.

Also the two solutions to D¢ = A¢ are expanded about
the origin:

(A3)

sl .
¢i(x) = E dijxpi*],
j=0

where in this case the d;; are constants. Here p, = —1
andp, =1 +1.

Matching the function and its first derivative atx = a,
and setting C, = 0 gives

N
nA =
2 ByS =0, (A4)
iz
where
X Rel+
Sj ::};0 O'jka'n qj (A5)
and .
O = & {€+1+ i)dzn’j,k-i

—[lg; + iy, + Y}i]dz,k—i}- (AB)

We rewrite Eq. (A5)

00
sj = ain“lj (‘Ijo +kZ=)1 O‘jkoti>. (AT
Thus,asn »® and &, — 0,
S]_ - ai:‘ljojo, (A8)
where
Oj0 = ¢+ 1)7’_;‘0 - (qj')’j() + '}’]{0)- (A9)

We now make two assertions whose truth can be estab-
lished. These are (a) if ¢,,4,, etc., satisfy ¢, < g, if

i <j,then g, =~ and (bi the polynomial vy, isjust

a constant, which we may set equai to unity.

It follows that,asn —» ®, S; — 21 + 1 and S] - 0 for

4 > 1. That this convergence is uniform on a finite inter-
val A; < X < A, can be seen as follows. The quantity S,
is an analytic function of both o, and A, since it is ob-.
tained by matching two functions each of which are
analytic functions of @ and x. This means that Sj(an, A)
is a continuous function of o, A except at points where
S, diverges. The same is true of the function a;7S;(a,, ),
where » > 0. We consider first the casej > 1, and then

j =1, Forj > 1, the exponent lj =1+ q; > 0. We write
Eq. (A7) in the form
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S, = ali?§(a,, ), (A10)

F)
where

§la,,2) _alJ/2<E(r )

From the above discussion, §.(an, A) is a~continuous
function of o ,, A except at points where S] diverges.
However, smce L /2 > 0 and the coefficients o, are at
most powers of lnoz S(O A) = 0. There is therefore a
rectangle, Ay <A < Az, 0 < a, < a,on which S(an,h),
and hence |§;(a,,, M, are continuous and consequently
possesses a maximum M. In this rectangle we thus have

|8, NI < ay’®u, (A11)

which establishes the uniform convergence of S; to zero

on Ay <A<, Forj =1 we have,from Eq.{AT),

Sfa,,2\) =1 +)ZJ‘1 o (lna,, ok, (A12)

where c]h(Z A) are polynomials in Z with coefficients
depending on A. The function §; — 1 is a continuous func-
tion of o,, A and vanishes as a, - 0 like a, (Ina ) s
w > 0. Therefore it converges to zero umformly on

< A < A, by the same type of argument by Whlch
i B 1, was shown to converge uniformly to zero.

The remaining conditions which the B,, must satisfy,
those corresponding to Eqgs. (21a), (21b7) or their analogs,
can be shown to be equivalent to the requirement that
the function y,(x) satisfy 0,,y, = Ay, at some point ¥ as
well as satlsfymg at ¥ the equations obtained in each
step in the sequence of differentiations performed to
obtain A(N)yn = 0. The dependence on % in the coeffi-
cients of B,; in the set of homogeneous equations so ob-

tained comes from terms of the form fﬂ fids) ¥, (s)ds

and f & 4s)¥,(s)ds. The latter can be shown to con-
verge tniformly on x; < A < A, by arguments similar to
those employed concerning the S that is, upon writing

x x
f = fo
fo are considered. The former converge uniformly on

A; € X s A, since, as can be shown by phase integral
analysis, the ¥, satisfy

— f: " the analytic and continuity properties of

g, (x)] < G(\)ex?/2

where G(\) is a continuous function of A.

Finally, the determinant of the matrix which determines
the B; may vanish for one or more values of A. The only
inhomogeneous equation in the system of equations is
the one in which the eigenfunction (Al) is given a definite
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value at a definite point x ;. The vanishing of the deter-
minant for a certain A merely means that for such a
value of X the eigenfunction has a node at x,. It is
therefore possible to break the interval [x,,2,] into a
finite number of subintervals, choosing for each sub-
interval an x, and a value for the eigenfunction (for

n = ©) such that the determinant of the matrix never
vanishes and the B; are continuous functions of A from
one subinterval to the next.
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We present an alternative to the usual formalism for quantum field theory by generalizing the Fock—Cook
formalism. We illustrate the method by applying it to a generalization of a familiar model of quantum field

theory.

1. INTRODUCTION

In the present paper we shall develop a mathematical
structure for quantum field theory, free of generalized
operators, and in the spirit of the work of Cook.! Here,
the fields are defined as bona fide operators acting in

a Hilbert space in accordance with the notion that the
formalism should only describe the creation or anni-
hilation of particles corresponding to physically realiz-
able wavefunctions. In this way we avoid the usual
difficulties of multiplication of generalized operators.2

The method is illustrated by the rigorous treatment of
a generalization of a familiar model of field theory—
the “scalar field model.”3 The generalization (i) in-
cludes the possibility of spins and charges, (ii) allows
for 1,2, or 3 space dimensions, and (iii) includes treat-
ment of the “heavy” particle in the recoilless, Galilean
recoil and relativistic recoil cases, Since we do not
include antiparticles, only a single infinite renormaliza-~
tion remains. Inclusion of antiparticles would make

the Yukawa interaction a special case of the model; but
it would also increase the difficulties connected with
the renormalizations. For the present, we shall restrict
ourselves to the simpler model to illustrate the for-
malism,

In Sec. II we review the basic techniques involved in the
Fock-Cook formalism.! In Sec.IIl we derive a formal
expression for the interaction. Physical principles lead
us to writing this interaction as sums over the bona fide
fields rather than as the usual integrals over operator-
valued distributions. In Sec.IV we introduce cutoffs
both of the ordinary momentum space or configuration
space varieties, and of the form of restrictions on
certain sums. The self-adjointness of the Hamiltonian
with cutoffs is discussed in Sec.V. The removal of the
cutoffs after renormalization will be treated in a sub-
sequent paper.

. THE HILBERT SPACE AND THE NOTATION

In this section all spaces and operators will have pre-
cisely the meaning attributed to them in Cook's work,
henceforth denoted (C), to which we refer the reader
for details.

We will be concened with two types of particle: one a
boson and the other a fermion.

The bosons are to be of mass u > 0 and, in general, are
to have spin and charge states labeled by the subscripts
a, and ay, respectively. The number of spin states, res-
pectively, charge states, will be denoted by (2%1 + 1),

respectively, (2no(2 + 1). The letter “a” as a subscript

on operators will label them as acting only on the bo-
sons, The bosons will be treated as “light” particles
and accordingly will always be treated relativistically.
From the theory of induced representations of the
Poincaré group, or otherwise,4we know that the one-
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particle Hilbert space for particles of spin zero and
positive mass is the space of all measurable square
integrable functions on Minkowski space, with points
labeled (p4,p4,03,04), With respect to the measure

6(p2 — )1, 1dp dpdp, where p = pF +pE + pg —
p%. Since this measure is concentrated on the hyper-
boloid p2 = u2, it is equivalent to consider the space
£2(R3) with measure du (p)1= w(p)-1dp,dp,dp; =

@ (p)-1d3p, and scalar product (f,g), = [F(p)g(p)w(p)t
d3p, where we have used the notation ¥ = complex con-
jugate,p = (p]_’pz,p;;), and w(p) = (u2 +P12 +P22 +
b32)1/2, For s space dimensions we take p = (pq,...,
ps)r w(p) = [“’2 +P12 toee +Psz]1/2’ and (fig)ﬂ =
[7(p)ig(p)w(p)-ldsp. To include the spin and charge
states of the bosons, we take the single particle space
to be the direct sum of £2(R¢) taken (2n, +1)(2n, +1)

times: (V= £2 (R*)@- - ‘@ L2(R%). We will abbre-
viate n, = (Zn‘,,1 + 1)(2n(le + 1). Elements of this space
will be labeled 7 = {£.},f, € £2(R%), @ = (a1, ap), @; =
nai, Mo, — L...,— n%,z‘ = 1, 2 and have scalar product

(£,8) ;=2 o{fos 8 .- Henceforward, the arrow vector
will be used exclusively to distinguish elements of the
single particle Hilbert spaces from elements of the
£2 gpaces.

The Fock—-Cook space constructed from 3 §1) is denoted
by §,;i.e., §, =202, @ J{n) where 3 (") designates the
subspace of symmetric tensors in (), the n-fold ten-
sor product of 3 & with itself. 30’ is the space of
complex numbers. The corresponding creation and
annihilation operators are denoted by a*(f) and a(f),
respectively, and obey the canonical equal-time commu-
tation relations [a(f), a*@)]" = (F,2) ., etc., where I,
denotes the identity operator in ¥, (~) denotes the
smallest closed extension, and the }', & are by definition
taken from ¥ {1

The one particle free Hamiltonian for the bosons is
taken to be the seif-adjoint operator

n

a
H, (D= E;l[hné(i.l)@ REGD ... @hBtima)]

’

where 8(i, j) is the Kronecker delta function, k9 = I,
and h_ is defined by

D@,) ={f € £2(Rs) such that [If(p)|2w(p)dsp < «}
and for such f
(R F)D) = w(p)f ().

The second quantized free Hamiltonian is taken to be
the self-adjoint operator Q(H{}) restricted to ¥, and
will be denoted H_,. [The § notation is that defined in
(C).] The number operator N, is defined as the restric-
tion of Q(I) to F,, and from the inequality w(p) = u, it
follows that H, = pN,. From (C) we obtain the usual
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commutation relations between H,,, N, and the fields,
as well as the estimates

la*(Pxll = 171, (N, + 1017241,
la(F)xll = 171,11 N, 1724

for all x € D(N,1/2), |7, = (£7), /2.

We now turn to the fermions which are the “heavy”
particles in this model. Because of this “heaviness”
some nonrelativistic approximations of the kinetic
energy are natural. We shall treat the cases of static,
Galilean, and relativistic recoil, precise definitions of
which will be given below. For simplicity we shall dis-
regard the corresponding anti-fermions. The fermions
are considered to have spin with spin state indexed by
the subscript g8y = nBl, ”s, —-1,...,— nsl,where nal

is a half-odd integer. They may also exist in charged
states labeled by the charge index g, =n, , nﬂz —1,

«v.y—ng . B will denote (8,,8,). The suf)script
2

Y on operators, spaces, etc., will indicate that the con-
cerned object is relevant to the bosons only. The single
particle Hilbert space I, (1 is taken to be the (2m + 1)
X (Zn‘52 + 1)-fold direct sum of £2(R*), with Lebesgue
measure, with itself. We abbreviate n, = (2n, + 1)

1 -
X(2n, + 1). Vectors in ¥ {1 will be designated by g =

{gsh Zgﬂ € £2{Rs). The Fock—~Cook space for the fer~
mions is §, =2, , ® X {®), where X (* is the subspace
of antisymmetric tensors in the n—fofd tensor product
of 3 {1} with itself, The corresponding creation and
annihilation operators are denoted by y*(g) and ¥(g),
respectively, defined for all g ¢ (1), and obey the
canonical equal-time anticommutation relations

{¥(@), ¥+ (n)}, = (Z,h),I,, where [, is the identity opera-

tor on §, and (Z,h), = Ziglgghg) =204 fga(k)*hs(k)
dsk. The Fermi fields are bounded operators on ¥
satisfying [+ () = iy (I = | gll, where g2 =
(Z,8),. The one-particle free Hamiltonian Hw(wl) is the
self-adjoint operator

n
H(()g) :zé[hws(i.l) @hws(i.z)ea. . .@hvé(im(,)] 5

where kw is defined by
D) ={f e £2(R9) such that Ner)f (k) |12d% < w},

and for such f, (1, f)(k) = e(k)f k), where €(k) is given
by one of the choices m,m + (k;2 + -+ + &k 2)(2m)-1,
or (k% + kg +.-++ k2 + m2)1/2, These choices of €(k)
will be called the static, the Galilean, and the relativis-
tic recoil cases, respectively. The second-quantized
free Hamiltonian is the positive self-adjoint operator
Hy, = @, (H§1), the restriction of QH{D) to . The
number operator is N, = ©,(I), and since €(k) = m, it
follows from (C), that Hy, = mN,.

For both the fermion and boson cases our convention
on functions over R is that the variables are to be
momentum space varjables unless the function is em-
bellished with a hat (), denoting Fourier transform, in
which case the variables are to be in configuration
space.

The space for the combined system of bosons and
fermions is § = ¥ ®F,. Operators which act only on
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§, or §, are aiways indexed by “a” or “¥” so that
superfluous tengor product notation will be dropped.
For example a(f) ® I, will be written a(f). The total
free Hamiltonian is defined as H, = [H_, + H,,] and is
self adjoint and positive on .

iH. THE FORMAL MODEL

For our interaction we shall allow creation and anni-
hilation of the bosons in the presence of fermions, so
that a particular interaction would be of the form
at(F)+ (@) (), for some Fe %{Vand g,k € SV and
where # on any operator will be used henceforward to
indicate either the operator itself or its adjoint. We
expect the relative strength of such interactions to

be proportional to the overlap of the wavefunctions and
to depend, in general, on the charge and spin. The over-
lap property will arise naturally from translation in~
variance and locality requirements.

We define a canonical injection from the £2 spaces
into the single particle spaces as follows:

Let fc £2(R9), Then define 7, € X{Vby (7} )y =

b, qf. For example let {f;}°, be an orthonormal basis
for £2(R¢). We generate an orthonormal basis for (¥
labeled {fi.u }x a = (01:“2) by takingfi.a = {fi,w ’
fi ot = 04 uf;e Similarly, let {2}, be an orthonormal
basis for £2 Rsl_?._n)d generate the particular basis for
% Vgivenby {g, 5 },8 = (81,8,).

The interaction is taken to have the form

V=Z}

o,B,87

Via,B8,8), (1a)

Vip,p')= 5 Ce'a*(F, 0 WHE,.0 W(Znp ) + coc.

Temporarily neglecting spin-orbit interactions, we
assume that C#8¥ factors into C,gy and Cj, where

C .pp depends only on the spins and charges, and C;j,,
depends only on the space part., Since «, 3,8’ have

49 By, and possible values, respectively, C,qy 18 2
finite matrix, which we take to be real for simplicity of
notation. The details of charge conservation, allowance
of spin flip, charge or spin independence of the inter-
action, etc., may be included as further constraints on
C s> Which we shall, however, not need in the sequel.

In order to have the interaction formally basis indepen-

dent we choose C’;;, to be linear in g, o and antilinear
in f;, 0 &;,6- Thus

Cisn = Jdspw(p)-tdsqdsr £,(p)'g,la) g, )K (p,q,7),

where the kernel is to be determined.

It is convenient to write all expressions in such a way
that they depend only on the basis functions for £2(RS).
For this we observe that if {g,}%, is a basis for £2(R9),
and forming {g; _} by (g, ), = 6, g, we then have
the result® ’

R o Y .
i= o

for all f € 3¢V and for all x in D(N3/2), This result is
not obvious since the expansion is not an expansion in

a basis for 3 (Y, and the scalar product is not the scalar
product in i€, ), In fact these two properties compen-
sate exactly.



132 F. E. Schroeck Jr.: A model of field theory treated in the Fock—Cook formalism 132

Let K , be defined by K k(p) fdsqur (g)Tg,tr)
X K(p,q,7). We assume Kye L2(R®). 'f’hen we have

E C,ijka+(fi,a x = Z: (fi’Kjk)anf(fi,a)X

L

= a+(K].,,,a Ix =go§ (gi.a,,K].k';)a+(gi'a/)X

]

—
=,20 (g1, K pa(g; Jx
1=
We, therefore, may transform V(a, 8, 8’) to
, & — — —
V(Ol,ﬁ,ﬂ ) =Ca6ﬂ’ . Zk 0 Dijka*(gi,a)w+(gj,5)w(gk.ﬂ' )
14 R=
+ e.c., (1b)

where D, = (g;,K ;)

= [dspdsqdsr g,-(p)*gj(q)"g,,}r)K(p, q,7)

= [dsxdsydsz g%)'g () 8 ) K(x,y,2),
where ~ denotes Fourier transform and where ¥ denotes
the second Fourier transform, i.e., for all h € £2(Rs),

v
h(k) = h(— k). Translation invariance requires

I?(x,y,z) = K(x— ¢y —cz—c) forall ce RS

Locality requires IA((x,y,z) = p(x)8¢N x —9)6 (s N x + 2),

5o that both require
Dijk = (é\épgk)' (le)

We assume sufficient regularity on the basis so that
these integrals exist. For instance, it is suff1c1ent to
assume g, € £2(Rs) N LP(Rs) for alli =0,1,--. With
these assumptxons and recalling (2) we may perform
the i sum obtaining

V(a,8,B") = C oy ?0 a*(g}*gk,a)t(f@fa)w(gk,y )
Prd

+ c.c., (1p")

where * denotes convolution,

Alternatively we may choose to perform the j,# summa-
tions. For these purposes, let us now define an auxiliary
operator:

Let 7 € £%(Rs). Let 0(f) be the bounded operator on
L£2(R9) defined by D(O(F)) = £2(R*), and for g € £L2(R$),

o(flg = fg, where “"denotes the inverse Fourier trans-
formation. Then [0(F) = I 7l ..

Let M(f, a) denote the bounded operator on ¥ () such
that for all g in 3¢{1, g = {g},

((f, 0By =T Cop© (Ve

We may think of M(f, a) as an n, X n, matrix of opera-
tors and deduce a bound for M(f, &) as follows:

M7, g1 = 10105, ), 2
=20 5 o0 Ng I
= D IFIZ) T C g g1
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i 100 ]koc L, 87 (ﬁx fozzzu’Kjkotaa (f a')X

= fmlzog(%:,rcawlngﬂ,n)z
< nﬂ@:@@ |caaﬁ,\)2 IZ12

in(f, @)l = [; (}EZ,I C ot |> 2 ] 2|7}

or

Since M(f, a) is a bounded operator, any dense set of

vectors in 3(3451) is a core for M(f, a). Furthermore
Q,(M(f, ) exists and D[Q,(M(f, d))] 2 D(N,).

now look for an expansion for 2,(M(f, @) in terms

of the fields. The results is already known if M(f, @)

is a normal operator.® In general, M(f, a) is not nor-

mal; however, we may capitalize on the fact that M(f, a)

is a bounded operator. Then the analysis goes through

exactly as in the case for normal operators, but using

the additional fact that QW(M (f, @)) is defined every-

where on each (™), Thus we have Q,(M(f, ))* =

2, (M(f, @) and for the basis {g; 3} ot iV, Q,(M(f, a))

= 7, E, (gj,s ,M(f’a)gk,ﬂ’ Nﬁ(gj.ﬂ )‘I’(gk.ﬂ')

j k=1 B

2 2 Cﬂe'(g],fgkh//*(g 5)4/(gk e’)

jok=1 8,87

Therefore, choosing the basis {g,} such that g, € £*(Rs)
for all , we have

V=2V,
o]

v, :'Eo a*(gi,a)ﬂw(M(é{, a)) + c.c. (3)
i=

If we wished to include spin—-orbit interactions we could
easily do so by defining the appropriate M operator and
using form (3).

These results could have been formally derived from
the form f[a*( %) + a(x) [y * (x)y (x)d$x by using the com-
pleteness property of the basis {g, s 1.7 Any of these
forms would require an infinite renormalization. This
is indicated by the fact that V is not defined on vectors
of the form x ® ¢ where x€ §,,¢ € §,,(¢,N,¢) = 0,as
a simple calculation will show. % For our purpose, the
summation form for V is preferable to the integral form
since every term in the sum is a well-defined operator
on ¥, whereas the integrand is as ill-defined as is the
entire integral. We shall obtain a bona fide operator

by restricting the sums (“mode cutoffs”).

IV. THE CUTOFF INTERACTION

We now show how to introduce into the interaction the
usual configuration space and momentum space cutoffs,
as well as less conventional mode cutoffs obtained by
restricting some of the infinite sums.

Suppose that we wished to describe the situation in which
the interaction vanished outside some volume U of
configuration space. We can introduce this effect into

V by altering the coefficients Dz .p» Which control the
space behavior, as follows:

Let p be the characteristic function for U,

506) 1, xe€?
P =10, xx 0.

We then obtain the desired behavior by the change

D, ~fdsx b (%), (%) g, (x).
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For more generality we shall only require ﬁ S §°°(RS).
This cutoff is then removed by taking the limit p — 1
in some appropriate sense,

Alternatively, ﬁ may be removed from the D, i coeffi-
cients and placed instead in the fields as follows:

Let p € £®(R5), and let ©(p) be the bounded operator on
£2(Rs) defined as in the previous section. We then ex-
tend O(p) to an operator on ¥ {1V (using the same nota-
tion) by defining (0(p)f),, = 0(p)f, for all = {f} in
¥ {1, We then define creation and annihilation opera-
tors smeared (regularized) in configuration space by
aiﬁ(f) = a?(9(p)f). Recalling Eq. (2) of Sec.III we then
have the identity

;L‘z Jdsx ﬁ(x)g?i(x)fgj(x)@k(x) at(éﬁ)x

:i;io Jasx £:(0)12,(x)1g,(x) al (27,0 )x

for all x € D(N1/2), The coefficient is now just D, .

Suppose that we wish instead to have a momentum space
cutoff. We follow a similar procedure, but work in
momentum space after an inverse Fourier transform:

Let p € £o(Rs) and let J, be the bounded operator given
by multiplication by p: (J, f W) = plk)f(k) for all

f€ £2(R%). Then we introduce the cutoff into the inter-
action by the change

2N ~ -~
Dijk - fdstpgi (x)1g,~(x)'fgk(x).

The cutoff would be removed by taking the limit p — 1
appropriately.

At this stage, singling out g, for special treatment is
only whimsical, This choice puts the cutoff manifestly
on the momenta of the bosons. We transfer the loca-
tion of p to the fields as follows:

Keeping the same notation, define the bounded operator

J, on ¥ Vby (J f), =J f, forall f={f}in H{V.
efine the smeared (regularizeg) creation and annihila-

tion operators by aﬁ(f) = a#(pr) (no hat on the p).

Then use Eq.(2) of Sec.III as before,

In order to introduce cutoffs by restricting the sums,
we make the change D;;,— K, D, , where {K,,} is a
sequence of ¢ numbers. For the preservation of formal
symmetry we require K, = K, ,. This cutoff is re-
moved by taking the limit Ki].k—> 1 in an appropriate
manner.

Since only a momentum-space divergence appears in
the model,3 we shall henceforth take as our general
cutoff interaction either of the forms

Vp,K= cx%B’ VP,K(Q’B)BI):
Vp,x(a; B8,8")
0 —
= Cusp j.?:O Kjka;(é;*gk,a )W*(A?-,—:)ll/(gk.ﬁ, )

+ c.c., (1)
or

VP-K = %} VP'K(Ot),

v, xl0) =2 Kal(z; 2 0, AM(F],a) +ce. (3)
i=0

J. Math. Phys., Vol. 14, No. 1, January 1973

We shall next give a precise mathematical meaning to
the formal manipulations carried out in this section.

V. SELF-ADJOINTNESS OF THE CUTOFF
HAMILTONIAN

In this section we shall exhibit classes of cutoffs such
that Hy + V, ; is self-adjoint and such that additional
useful properties hold. We first exhibit some general
theorems on domain mappings for the fields and second-
quantized operators. Then we apply these results to the
particular case at hand.

Mathematical preliminaries

We will use the following multiple commutator notation:

Let A, B be operators such that BD(A")< D(A#-1) for

n=1,2,...,M (where M may be ©), Then we define
(adA)O(B) =B,

(adA)(B) =[A,(adA)-1(B)], =n=1,2,,..,M,

with domain the domain of the right-hand side.

Lemma 1: Let A, B be positive self-adjoint opera-
tors in Je (D, e (D), respectively. Then for fe D(A"),
g€ D(B"),n =6, 1/2,1,...,we have

@ at(7)ID(Q,A)r+1/2) C D(Q,(A)]"),
) DR, B)") < D(Q,B)]).

Proof: For the casesn=20,1,2,...,the result (a)
follows by induction using

1) [0,4),a (N =a*(AF),

@) [2,(4),a(F)])”=—alaf),

(iii) D(a*) = D[(N, + D1/2] 2 D[Q,(A4)1/2],
(iv) for y € D(Q,(A)+1/2), [0 (A)]ra*(F)x

n
= :‘;’o @){adg (A)] P a*(F)la (A)-Py

n -,
= 20 a(#)e(n)at (Arf)[Q,(A)]n-2y,

p=
where o(#) = + 1 if a* = a* and — 1 otherwise. (i), and
{ii) are contained in Cook's result, (iii) follows from
the existence of some constant & suchthat A = a 1

which implies £ ,(A) = a N, and (iv) is a known multi-
ple commutator result.?

For the cases n = %, 3, ..., we use the fact that if G is
any closed operator, D(G*G) is a core for G.1° Thus
for any y € D([© ,(A)]#*1/2) there exists a sequence
{xeh x € D@, (A)]27+1) for all ¢, with x; converging
strongly to yx and [Q (A)]**1/2y, converging strongly
to [2,(A)]#+1/2y, We then have

g ()]l Py, — xo)li2

Rl Q-

X llat (A2 Fla(AF)[Q (A)]n-3/D -2 (y, — )|
X g (A)r-pr+ 72Xy, — 5 )]

which converges to zero as £, s - «, since

la* @l = 121 (N, + D24 and @,(4) = « N,.
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Since [©2,(A)]* is self adjoint, it is closed; hence
a(f)x € D{Q,(A)]*). The proof for case (b) is also
similar, the better domain condition coming from the
fact that Y#(2) is a bounded operator.

Lemma 2: Let A, B be operators in 3¢ () such that
B is positive, and for all y € D(B), [lAxll = [Byll. Then
for all ¢ € D(N/2Q(B)), Il A)¢ll = IN/20(B)g |l

Proof: Since the number operator N commutes with
Q(A), (B), it suffices to prove the result for ¢ €
D((B)) n 3(V) for each I = 0,1,2,.... Consider ¢,a
finite linear combination ef vectors of the form x; ®
xz ®*++®x, with ;€ D(B),i = 1,2,.,..,l. Then, de-
fining the j-fold tensor product of the identity with itself
to be 1¢4),

(Al = “:21 [G-Vg A ® [(l—i)¢H

slzlul(i-l)@ A® 1G]
i=

S_IEI l1G-De B e 1G-ip.
iz

If a;,b; are any real numbers, then

! 2 !
<E aibi> =2, a22 b2
i1 T S

so that choosing b; = 1, we have

! ! 1/2
a, =123 a2) .
b /

Thus
1 1/2
oAl < 11/2(231 l1G-V'e B® 1<l-=’>¢llz)

< 112jo(B)p |l = IN2Q(B)s |,

the last inequality coming from the positivity of B.
Since vectors of the form considered for ¢ form a core
for Q(B) restricted to 3¢ (?), the results extend to all of
DB n 3D,

Lemma 3: Let A, B be closed operators in ¢ (1
such that

(a) A is strictly positive and self-adjoint (4 = 7/, for
some positive real number 7),

(b) B is bounded.

(c) there exists a fixed integer M such that for all
n=0,1,2,...,M, BD(An+1) C D(A"),and

(d) there exist positive constants ¢ ,n=0,1, M

cers
such that [[(adA)*(B)xll = ¢, IlA"”Xll for all y € D(Ar),

Then Q(B)D(Q(A)r+1) C D(Q(A)?) and
Ie(a)QB)xl
< (‘2 c,> I N Ayl = ( 2] c;) rilaia) iy,
p=

for all x € D(Q(A)n+1),

Proof: We first show the result to be true on J¢ (),
l a positive integer. We again recall that the I-fold ten-
sor product of D(A»+1) with itself is a core for Q(A)s+1
restricted to 3¢ ¢¢), Therefore, consider x a finite linear
combination of vectors of the form x; ® ¥,®+++® x;,
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xi € D(A®+1),4=1,2,...,1. We wish to show that
Ie(A)»Q(B)xll < ©. We recall that for bounded opera-
tors By, By, [Q(B,),Q(B,)]” = Q(B;, B,]) so that, in
general, [adQ (B,)]?[2(B;)] = Q[(ad B,)?(B,)]. Because
of condition (c¢) and the particular nature of x> We then
know

Inara@y = || 3 antaplawear-s|

= || & attasarmiaary|
= )y

+ ,,21 le[(adA)(B)Ja(A)m-y .

Since A is strictly positive, there is a positive number

7 such that A = I and thus Q(A) = 7Q () = nN. Since
Q(A), nN commute and are positive, it follows that for

all p c D(Q(A)), IN¢ll = (1/n)lQ(A)¢|. B is bounded, and,
by td), we know that QB || = cll Myl for all y € D(N).
Thus we estimate the first term by

leB)R(A)ryll = coll Np(AY x|l = contliR(a)s+1y].
The remaining terms may be estimated using Lemma 2,
and conditions (a), (d), and the result [Q(A?)y]| =
le(A)?2y|l which follows from the positivity of A (Ref. 11);

Ie{(adA)2(B)](A)s-2xll = c,| N1/20(AP)Q(A)m-2y|

c,lIR(AP)N2Q A2y

= ¢,y lQ(A)pN/20( A)n-2y

Cp” N2Q(A)nyll = CPH Na (Al
cpn (Al 141

H

A

We, therefore, have obtained

Ie(A)ra@)yl < ”zcc,,n Na (Al = i}ocl,n‘llm(A)“lxll.
z 2

This inequality extends to all x € D(Q(A)»+1) n ¥ (1),
Since the inequality is independent of [ and since the
number operator N reduces (A), the result extends

to all x € D(Q(A)=+1). QED

There are several variations of the previous two lemmas.
For instance, Lemma 2 can be altered to give the in-
equality without the factor of N1/2 if one also knows

A = B. H the factor of N1/2 does not appear in this
estimate, then proceeding to Lemma 3 one may obtain
the same results with the weakened condition
ltadA)B)xll = ¢, llAnyll. These variations are of
general interest, but will not be pursued here since they
are not needed for the present model. Condition {c) for
Lemma 3 can be weakened to requiring only that there
exists a dense domain D such that BD C D(A»). Then
the fact that A, B are closed implies (c) (Ref. 12).

The last two lemmas and variations of them, show how
the behavior of operators in 3 (1) determines the be-
havior of the second~quantized operators and how some
hard estimates may be simplified by considering the
corresponding estimates in 3 (1), As an example, we
note that for A, B as above, and for all x € D(Q(A)n+1)
we have [ad(A] = XQ(B)]x = ©[(adA)»(B)]y, and for

n> 0,
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I

I[ade(A)]*[@B)]xll = [Q[(adA) ¢ (B)]y]
c, | N1/2gy (A")x”

c, IN12Q(A)y|.

1A

1A

With this type of analysis in mind, we now examine a
particular choice for A, B. We will use the notation
B=(ky,...,k )€ RS and e(k), h,,and 0(f) will denote
the operators deimed in Secs. II and oI.

Lemma 4: Let f be such that k, ?f e £L1(R¢), f real,
forp =0,1,2,...,n Thenfora11¢>cD(h =),

ladn, )*(0(fNell = 4enj§30 21, -if Wk, ol
where

2, if e(k) =m + |k|2(2m)-! (Galilean)
1, if e (k) = [1k12 + m2]1/2 (relativistic)
4, if €(2) = m (static).

Proof: We first establish the estimate e{k) <
6[elte —p) + e(p)].
For the static case e(k)
with 6 = 1.

For the Galilean case €(k) = m + 1&|2(2m)-1, we have
el<lk—pl+ |plsothat k2 <2]k—p|2+2[pl.
Therefore the estimate holds with 6 = 2,

[k + m2]/2 we

= m, the estimate is trivial

For the relativistic case, elk) =
have

€(k)?

k2 +m2=<l—pl2+plz+2lk~pllp|+m2
= |k—pR+m2+ [pl2 +m?2
+ 2k —pl2+ m2]1/2[]p 2 + m2]1/2
= [elk — p) + e(p)]2.
Thus 6 =1,
Let ¢ € D(r ") and assume ¢, f are positive. Then,
I, = (f x) 1|2
= [fle—q)tolq)TelB)2nflk —p)p(p)dsp dsq dsk
627 [ (ke — q)* ¢ (q) [k — q) + €lg)]”
[ele —p) + e(P)rfle —p)p(p)dsp dsq dsk

2 25 (D) S m ik — )b, 49"
i,5=

IA

X

i

X

(r,-If )k — p) R, I9)(p)dsp dsq dsk
o2 3, , @D @21 ) w7 -3f)xih, i) .

W=

A

More simply

= Fa9)ll = 012 (D1, -if)s 00, )]

i=

o 3 @I, s

i=

o 3 @hiynif iyl i,

A

(]

1A
® o

it

More generally, f = A —fs0 = ¢, — ¢_where f.nf-’
¢, ¢_ are positive. Then by the linearity of the con-
volution we have
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Sllhw""'f+lllllh¢i¢>+li

EREARPRN
I, (fxg)l < 67 E @ 2+ TR AR

+ a2t i wnp_ll
Since ¢,, ¢_ have disjoint supports, we have
ln,iplz = [e®)2ie, ()2 + ¢_()2]doR
=1k, 112 + IR, i¢ lI2
or ||h, ’¢1“ = llh,¢ll. Since f,,f have disjoint supports,

we know |k, 7-if, Hl + Ik, Zf||1 = |ln,»-if ;. Summariz-
ing, we have for ¢ real,

I, (fep)ll < ze"Z Mln,2-if N lin, el

Similarly, if ¢ is complex, replace the 2 with a 4. This
insures that O(f)D(k,”) € D(h ). Recalling that

(adh /(O = 2 (= 1-? (3)h, PO/, 209
b=

and the identity (';,)(" K) = (")(J) we finally have

l(adr, )= (0 () |l = Z‘, ((3) 1, 20(1h, " 20 |

o 3 f()( 5) Iy mp=ig Ly peig ]

=0 i=0
n

o 3, }":(,,)(J $) 2371l I, g |

P

()(9) IR AR
i()(p) Ik, 23f 11 Ik, i |
= 4¢n ZDO(;‘) 2j||h¢"'jf“1“hwj¢”°

ll\

Il

b
i
(=]

H

Corollary 1: Since m-lh, = I we know that |k i¢ =
min|lh "¢ so that there is a constant c, depending on
6 fsucﬁ that [(adn WOl = ¢, lln ”qbll for all
¢ € D(n,").

Application to the interaction

Assertion 1: Let {g }¥ be an orthonormal basis of
£2(Rs) such that g; € S(R®) for all i. Let p € £2(Rs),
LetL=1bea flxed integer, and let {K k} be a sequence
of complex numbers such that K =K, and such that
the sums

Fny, ny, n3)

=2 v
= 35 1Kl Mg, Mk, 2 gl 0 E g, I,
Jik=0

converge for all positive integral n,, n,, #n; such that
0=pn) +n, +ny<L. Let
V"'k(a B,8’)

—>
= aBB'Z; Z Kka (g]*gk tx)w (g],s)ll/(gk B:)"‘C C.

Then V %4 (a, 8, 8’ ) converges strongly on D(N_1/2) as
O,V — oo can be rearranged arbitrarily, and deflnes a
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symmetric operator V_.(a,g, g’ ) in the limit, Defining
Vor =288 Vil B, B'), we have Hy + V,, is self-
adjoint and D(HO") = D([HO t V) forn=0,1,...,L
Furthermore, defining R, (H + Vp o — H, ,then for
each #n above, there exist constants p(n) 8(n), y,(n),i =
1,2,3,4, suchthatHO+ v, +6n)>0andf0ra11xc
D(Ho 0)

W IR, Xl =y, W[Hy + V,, + sy,
) lR, + 6@yl = y2(m)l[Ho + v, + sGInl,
(1i) | Hy» x I = [ Hy + p ()] x| s y3 @)l Ho + Vot s(mI]ryll,
() ([ Hy + V,, + 8i]rxll = y J()li[H + p(n)l]nxn

Proof: Since g; € 8$(R°), g; and g, are in N, Dk ") =

C°°(h ). Similarly J ;*gkc S(Rs) ¢ ¢<h,). Thus,

by Leémma 1,the summand of V9:Xa, 8, 8’ ) maps
D(Hym1/2) —->D(H0") n=0,1,2,""". We shall show that
this mapping property carries over to the limit operator
V., for the cases n=0,1,2,..., L by showing that for
qg=0,1,2,...,n Hy qV°- k(a B,B')x converges for all

x in D((N ¥ 1)1/2HO") fhe c convergence for the cases
q=0 and q = n along with the fact that Hy* is closed
gives the desired result. Furthermore, by the multiple
commutator identity AdB =2.7_, (9)(adA)?(B)Ae? it
suffices to show the convergence of)

(adHg)?[Vou(a,B,8")]x for all x in D[(N, + D1/2H"]

forp =0,1,...,n. We recall the properties

@)l = IEl,,
lat(Foll = (1,71,

and D((N, + 1)1/2) > D(H,'/2), Now on D{(N, + I)}/2H,")
we have

(N, + D2, & < D(N,1/2),

(adHy)2(Vei(a, B,8')

Lo p=1s g s
=C ' Z E E K'k
BBt Mym g "0"1‘"2‘" js1k=0 7
p= n1+n2+n3

—_—
v
X a2 %8, o Wy 28, s Wo(Ry 38, o)

+ (— 1)? c.c.

Thus

adHy)2(VeKa, 8,8 )y —

» o P
b -
Z ny'ny g (72% )zz% JZO Iz;) el

oty g=0
p:n1+n2+n3

x In*sg Eragll I, g IR, "2 g (N, + D1/,

which converges as o, v,0’, v’ — o, for p =< L, by the
convergence of the F(n,, ny, ny). In particular with the
choice 0 = p, k(a B,B’) is symmetric and, hence, so
is V . We also obtam

(adHo)? (Voy (o, 8, 87)x

= zlca'a’ﬂl!

ladHg)?(V, JxlI

Id !
=2 5 ICc, .ol 2 — L Fn, Ny, N3)
wmE VP ey c0 milnplngl TR TR
R LR P
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x (N, + /24, forp < L.

Using the additional estimate
NN, + D12y = p-1r2( By 12y )+ iyl
= p V2| H 24 + ligl,

the rest of the assertion follows.12

We remark that the above assertion is also true with

H, replaced by H_, throughout, modulo some terms which
no longer contribute. We also notice that any choice of
K ;,, such that the F(n,, ny, n3) converge for all finite

n1, Mp, N3, gives the result C¥(Hy) = C¥(Hy + V). In
particular, the choice K] ,» identically zero except for

a finite number of j, 2, gives this result.

Corollary 2: With g, p as before and K, = K,
such that F(0, 0, 0) converges, then V. is self- ad)omt

Proof: We have shown that

v ka”<2 E lCaBB,lF(O 0, 0)1i( N +I)1/2 I

o,B8,8

so that V, (N, +1)"1/2 is a bounded operator on F with
bound b = Zza 8.8/1C ogpr! F10,0,0).

Consider vectors of the form

=@y F Pyt t o,

where ¢, € %{?® §,. Vectors of this form will be said
to “have at most ¥ bosons.” The set of all vectors
having at most a finite number of bosons we shall call
§9. 59 is dense in §,and §9 C D(N,). Furthermore
ve K has at most 7 + 1 bosons and, hence is in D(N,).
B@r induction (V_ ,)»® has at most » + n bosons and we
have the estimate

1, gl = 1V, (N, + D2(N, + D12V, Jr-18 |
= bll(N, + DV/2(V, Jn-le|l
=blr +n—1+ D2V, Jm-18|
sb[lr + n)lr + n— 1)+ ()]2/2]all

Thus V_, is a symmetric operator defined on §9, §9 is

stable tinder application of V, ,, and 75 ol ltl"/ n') x
(v, )@ < w for all t € R, &'c §9, Thus by a theorem

of Nelson,13 V. is self adjoint.

We conclude this analysis by ireating the interaction
with the alternate form of cutoff (3'):

Assevtion II: Let {g, }0 be an orthonormal basis for
£2(Rs) such that g; € S(RS) for all i. Let p € £LP(R?)
and L be a fixed 1nteger Let {K } be a sequence of real
numbers such that the sums

Fip,q) = Z K R 20 g0 Ry ag

converge for all positive integers p, ¢ such that 0 =
p+g=L. Let

k_Z; Z K (g, a)m (M(g

a i=0

a)) + c.c.

Then the sequence {V9,} converges strongly on D(N,1/2)
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® %, () to a symmetric operator V,,(n), so that {V3,}
converges to the symmetric operator Vor = Z 0

V, »{n) defined in §. FurthermoreH, + V , is self
adjoint and D((Hy + V, ,]?) = D(H,?) for p = 1,2,..., L.
In each subspace F 3 X, () and for each p above,
there exist constants p(n,p), 6(n,p),y (np),i =1,2,3,4
such that (omitting the n, p subscr1pts), Hy + Vot 61
is pos1t1ve in%, ® JC ), Defining the remamders

= [H, + k(n)]l’ — Hy? in each §, @ %, "), we

also have, for ail x in D(Hy) N 3, ® x, ),

IR(Ixll =y I(Hy + Vour t oneyll,

[R(p) + 8Dyl = v, H(Ho +V,, + 6D)pyll,

WHo?xll = (Hy + pD)oyll = 34 ll(Ho + V. + 602yl

I(Hy + v, + 80251l = y4[(Hy + pD 2yl

Proof: Since the boson number operator N, = Q (I)

reduces Hy and V¢, and since § = =2i00® F,0 %,
we may restrict ail consideration to fF ®JC ) for a
general #., From here, the proof is s1m11ar %o that of
the previous assertion. We first consider the multiple

commutators of H w(l) with M(g‘r @) in order to obtain
estimates on the commutators of Hy with V,

We recall that, letting 7 = {f,} € 3¢, (%), we have Hogl)f)ﬂ
=h,fy and

v
[M(g}.’a)f]B :BZ; CaﬂB’O(g-i')fﬁ'
v
=§ Caaﬂ;g}*fﬂf.

N v
Since gfe $(RS), fy, € £2(R*), then g% «f,, € 8(RS). But
8(R$) € C*(h,) so that in partlcular,M(gz, a)D(H,,?) <

C®(H,,) € D(H,}) and M(g a)D(HE) < D(HE). Further-
more

[(adHOl,,(l))P(M(fg}, a)f], = ZBD Casef(adhw)ﬁ(o(émfs':

from which we obtain
ladH DA M(ET, a))F 112
=% I[(aaH D) (M (28, a))F]4l12

=TIy Cops(adi, )20 (ZD)7, 12
?
= %‘, (;2,4 | C oo 62 ZO 27‘(;)!%#-&; 2, iy M) 2,

The last factor we overestimate by [k, fy |l = [|H$ if]|
and use the result £(k)* = (k) to obtain

llaaH D) #(p( g;, a)f
b
=4 [%)(‘B[, lcaaﬂ,w)] 1/29pz_jo 2]'(;,?”hwp-jgi”l”Ho(l)]?”

Since Héwl) = ml, there exists a constant ¢, such that
the above may be overestimated by c, | H, (V7 ||, so that
we may apply Lemmas 2 and 3. We,t erefore, have,
for all x € D(N,1/2Hy9) N §,® X, (») g > 0,

ladHg)2(V, Iyl

SpACIHLAD
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N 7 v ,
x ladH)t[a;(g; o) + ay(&;, o ))adHo, ) a2 [, (M (g, )]

z‘;o (Z)fi K, |2a3 ”ha”%gilla[?(? [C pa |>2] 1/29q- 4

A

x S 23 (=) (| ng-t-ig | ,m G- @ N, + 1)2N, 13 a-py]
& (;) § g m a p (Hoy TEX

[ (E [ Cus ')2} va 3 3) () T (b )

X Fp,q—p —DI@N, + DV2N,1/2H -

From the next to the last inequality and the known con-
vergence of F(p,q — p —]) we deduce the existence of
the strong limit of (adH,)¢(V¢ )} as ¢ — 0. From
Hy,97? = m?H,y, 9 < mPHy4 and letting

5, ~Z[E(5 tcaw 2)| 2 50 () 50 62)
X 4F(p,q —p — jim~?,

we then have

l(adHg)e(Ve Il = E 2N, + )1/2N, Y/2H, el

which holds for all o including the limit as 0 = . For
g = 0, the above also holds with N, 1/2 replaced by N,.
Slmllarly,

o2V Xl = éo () (adHy)a(Ve JHor-a]
b
)4
= q=Zl (q)Eq 2N, + 1)1/2N, 17250y |

+ E,ll2N, + 1)1/2N Hyoxl

holds for all o including the limit ¢ —» «. Thus the limit
operator exists, is symmetric,and V_, maps D{Hy#* 1)
into D(Hy?). These conditions imply all the desired
results,12

We remark that as long as all F(p,q) exist, then C*(H,)
= C®™(Hy + V,,). In particular this occurs if K, is
nonzero only *for a finite number of ;' 5.

Corollary 3: With the conditions of the previous
assertion, Vp, » 18 self-adjoint.

The proof of this corollary is identical to the previous
one,

CONCLUSION

We have developed a different mathematical approach
for quantum field theory and applied it to a model which
exhibits an infinite mass renormalization, By this
framework we avoided referring to ill-defined products
of distributions. After introducing an unconventional
type of cutoff, which we called a “mode cutoff,” we
proved the self-adjointness of the cutoff Hamiltonian.
The removal of the cutoff and the relation between the
asymptotic and interpolating fields, will be the topic of
a forthcoming paper.
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The anisotropic Kepler problem in two dimensions
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The classical trajectories are investigated for a particle with an anisotropic mass tensor in an ordinary
Coulomb potential. For negative energies (bound states) these trajectories are isomorphic with the
geodesics on a Riemannian surface which can be immersed in a Euclidean space and which looks like a
“double snail.” For vanishing energy (or near a collision) the equations of motion can be reduced to an
autonomous system whose trajectories can be fully discussed. On the basis of extensive numerical
computations, it has been possible to give a simple, yet complete description of all trajectories with
negative energy. A binary sequence is associated with any trajectory where each term gives the sign of
the position coordinate for the consecutive intersections with the “heavy” axis. If the binary sequence is
represented by two real numbers, a one-to-one and continuous map from them to the initial conditions
can be constructed. Thus, the Poincaré map for the trajectories is equivalent with a shift of the binary
Bernoulli scheme (tossing a coin), and all the periodic orbits can be obtained systematically. A number

of these are discussed to illustrate the consequences of the isomorphism with the binary sequences.
Finally, the baker transformation and its use for finding the trajectories which connect any two given

endpoints, is mentioned.

This paper is concerned with classifying all the classi-
cal trajectories of a particular dynamical system. The
reasons for investigating this special case and for em-
phasizing certain features are explained in the first
section. Briefly,the motion of a charged particle with
an anisotropic mass tensor in an ordinary Coulomb
potential is of interest when one tries to understand

the relations between classical and quantum mechanics.
No fruitful progress in this area seems possible unless
gsome specific examples can be fully discussed; but
these examples have to be nontrivial. In two dimensions,
there should be no constant of motion besides the energy.
The results are not applied to the problem of connecting
quantum and classical mechanics in this report, because
there is enough work to be done just to describe the
classical system without relating it to the correspond-
ing quantum system. Therefore, with the exception of
the section entitled ‘“Background,” anybody interested
in classical dynamical systems can follow the discus-
sion. The mode of presentation, however, does not agree
with the generally accepted rules of the trade. The
latter requires a rigorously logical advance, starting
from the equations of motion and ending with the pre-
cise statements of theorems, including mathematically
clean proofs. I have not been able to construct such
proofs for most of the results, although I am convinced
of their correctness on the basis of extensive numeri-
cal calculations.

Computational exploration has become a recognized
tool in the study of dynamical systems. In particular,
the restricted three-body problem (two heavy and one
light body, attracted to one another by an inverse-
square-of-the-distance force and moving in one plane)
has been examined in this manner for over fifty years.?
The results have been essentially qualitative and,in a
certain sense, incomplete. There are too many differ-
ent kinds of trajectories to fit comfortably into some
scheme which catches them all. This happens apparent-
ly whenever the mathematical structure of a problem
is so involved that it can be approached only through
numerical work.

The anisotropic Kepler problem has never been inves-
tigated in this manner, to my knowledge. There is no
evidence that the equations of motion can be separated,
and the limit of isotropic masses provides only very
poor information about the anisotropic case. A substan-
tial effort has gone into understanding two features
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which make the ordinary two-body problem so simple.
The first feature is the isomorphism between the geo-
desics (great circles) on a sphere and the trajectories
in momentum space (hodograph). A similar isomor-
phism can be found; but the sphere becomes a Rieman-
nian surface which can be immersed in Euclidean space
as a “double snail,” having obviously one badly singular
point. The second feature is the behavior near a colli-
sion where the kinetic energy is much larger than the
absolute value of the total energy. There seems to be
no way to regularize the equations of motion by an app-
ropriate choice of the variables, as it is possible to do
in the ordinary Kepler problem. The best one can do is
to reduce the equations to an autonomous (but not Hamil-
tonian) system in two dimensions, and gain insight into
the trajectories when the total energy vanishes.

It comes, then, as a considerable surprise to find from
numerical calculations that all trajectories can be des-
cribed in a very simple, yet complete fashion, The main
clues are the trajectories which intersect the “heavy”
axis in position space perpendicularly, If one plots the
further intersections of these trajectories with the
“heavy” axis in a Poincaré map (conjugate momentum
vs position), he finds a set of curves which can be used
to define a natural coordinate system. Each trajectory
is determined by two infinite sequences of binary num-
bers which give the signs of the position coordinate in
the consecutive intersections with the “heavy” axis, for
the forward and for the backward motion. If each binary
sequence is interpreted as a real number (giving the
natural coordinates), there is a one-to-one, continuous
mapping into the initial conditions for the trajectory.

The existence of such a map makes the anisotropic Kep-
ler problem in two dimensions an ideal example of a
dynamical system. So far, only the geodesics in a space
of negative curvature have been completely described
in terms of Bernoulli schemes.? But, their behavior is
quite different. The elements in the associated sequen-
ces are positive integers, rather than simply 0's and
1's as in the present case. Also,the trajectories are
without conjugate points, whereas in the anisotropic
Kepler problem neighboring trajectories with the same
initial coordinates cut into one another. This reflects
the mainly positive curvature of the “double snail”
whose geodesics are being studied.

The Poincaré map is now identical with a double shift
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of the binary sequences. Periodic orbits can be found
quite systematically by discussing periodic sequences.
Many of them are self-retracing in position space, a
fact which follows directly from their binary sequence,
but might not be easily understood otherwise. Their be-
havior as the anisotropy vanishes is of great interest
because only the circular orbit in the ordinary Kepler
problem survives as a periodic orbit if the masses be-
come different. Finally, one can get some idea about the
variety of trajectories which join any two given end-
points. The well-known baker transformation gives a
picturesque demonstration of the problems involved,
since one has to find the points of intersection between
two closed curves; one of which is being gradually dis-
torted by the iterated baker transformation. The dis-
continuities which arise are directly related to colli-
sions.

This paper has been written in such a way that some-
body can understand its content who is not familiar with
the theory of dynamical systems. Also, many results
are explained in rather descriptive terms, and a number
of drawings are presented, because the conclusions are
mostly based on the observation of extensive numerical
work and not so much on mathematical deduction.

BACKGROUND

In a number of papers I have tried to widen the applica-
bility of classical mechanics to the approximate solu-
tion of quantum mechanical problems.3 The main em-
phasis has been on the phase integral approximation to
find bound state energies in cases where the variables
cannot be separated either in Schrddinger's equation or
in the corresponding classical equations of motion. The
relevant ideas are presented in the previous paper, and
they are applied to a simple nontrivial example.

There might be simpler examples; but it seemed impor-
tant to pick a physical situation which is sufficiently
close to the Kepler problem. It was shown, in the first
paper of this series, that the phase integral approxima-
tion gives perfect results for the bound states of the
hydrogen atom, i.e., hot only the energies, but also the
wavefunctions for all bound states are given correctly.
Introducing some spatially anisotropic feature appeared
to be the most natural next step, This can be done with
the help of an external electric or magnetic field, and
the resulting situation is akin to the restricted three-
body problem. Anocther,less well-known situation arises
with a donor impurity in a semiconductor. In this case
the potential energy remains isotropic (and Coulombic),
but the kinetic energy becomes effectively anisotropic
due to the electronic band structure in the solid, It is
as if the mass of the electron in one direction is much
larger than in the two other directions.

The starting point for the preceding investigations has
been the classical approximation G(g”¢’ E) for the quan-
tum mechanical Green's function G(¢"¢’ E), which is the
probability amplitude for an electron to reach the posi-
tion ¢” if it started as ¢’ and has been moving with the
energy E. If only the spectrum is required, but not the
eigenstates, it is sufficient to consider the integral

d3q G(ggE) = G(E) which has poles at the eigenvalues
E; of the energy.
The approximation G(g”¢’ E) can be written as a sum
over the classical trajectories from ¢’ to ¢” at the
energy E, where each term consists of an amplitude
and a phase factor. The former measures the density
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of those trajectories near ¢” which started at ¢’,and
the latter is given by expl(i/f)S(g"q’ E) — 3 vn], where
S(q”q’ E) is the integral | p dg from ¢’ to ¢” along the
particular trajectory and v is the number of conjugate
points between ¢’ and g¢”.

If the energy E is negative, corresponding to bound
states, there are always many classical trajectories
between any two accessible points ¢° and ¢”. If the cor-
responding terms in G(g” ¢’ E) add up “in phase” for a
particular value E; the approximate Green's function
has a singularity as function of E, and an_approximate
eigenstate can be found with the energy E,; as the ap-
proximate eigenvalue, If everything goes well, E; can
be associated with a particular eigenvalue E;. It is im-
Qortant to know how G depends on ¢’ and q” for E near
E;.

1
In most practical cases, the behavior of the classical
trajectories is quite complicated. Therefore, it is rea-
sonable to compute G(E) = [d3q G(gqE) and to get the
approximate eigenvalues £, without worrying about the
approximate eigenstates. This was done in the previous
paper. By a very simple argument, it was shown that
the integration of G(qqE) over q emphasizes the periodic
orbits in the summation over all classical trajectories,
The trajectories which are closed but not periodic,i.e.,
where initial and final position coordinates coincide, but
not the initial and final momenta, contribute only terms
of higher order in Planck's quantums to G(E).

Thus, the leading terms in G(E) can be written as sum-
mation over all periodic orbits of energy E. Also,each
term takes on a particularly simple appearance. The
phase factor contains the phase integral S(E) = f pdq
over the periodic orbit and the number of conjugate
points. The amplitude factor can be expressed in terms
of the period T and the stability exponent. The condition
for a resonance in G(E) resembles the ordinary Bohr-
Sommerfeld quantization condition. The integral ¢ p dq
equals an integer times Planck's constant, and there are
certain corrections connected with the number of conju-
gate points as well as the stability angle «, i.e.,the
imaginary part of the stability exponent. The real part
v of the stability exponent has the effect of broadening
the resonance. Its width relative to the separation be-
tween resonances is given by v/27.

With all these results in mind, the main task in any par-
ticular case is to find the periodic orbits-as a function
of the energy. If they are sufficiently stable,i.e., if

v << 27, the quantization condition gives a series of reso-
nances in G(E) which qualify as approximate eigenvalues
of the energy.

This idea was applied to the simplest periodic orbit of
the anisotropic Kepler problem in the previous paper.
The particular orbit was found with the help of a Fou-
rier expansion very much like the one used by Hill in
his classic work in the motion of the moon. Its stability
exponent is small compared to 27 so that the quantiza-
tion rules can be applied and a series of approximate
energy Ei found. These energies are associated with
certain quantum numbers which are used in the descrip-
tion of impurity levels; but only a small fraction is
approximated in this way,

The next step in this whole investigation is, therefore,
quite obvious, A complete representation of all the
periodic orbits in the anisotropic Kepler problem has
to be found, and their contribution to the approximate
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response function G(E), particularly the resulting reso-
nance structure, has to be established. The present
paper goes a long way in this direction by describing
the full variety of periodic orbits for the two-dimen-
sional case. At the time of writing this is the only non-
trivial case where such a complete description of the
orbit structure is available with the exception of the
geodesics in a space of negative curvature.

CHOICE OF COORDINATES

The present treatment of the anisotropic Kepler prob-
lem is entirely different from the preceding one. The
nomenclature has been changed to adapt to the new way
of looking at it. Before bringing quantum mechanics
into the picture, there are three physical quantities to
cope with: The charge ¢, of the electron, the energy unit
E,,and the masses of the electron, 7, for the longitudi-
nal and m, for the transverse mass out of whicn we get
the mass unit mgy = (mm,)1/2,

With ¢, E, and m we can get natural units for any
other physical quantity, such as (2myE)1/2 for the
linear momentum, e2/2x,E, for the Cartesian coordi-
nates where «, is the dielectric constant of the medium
(11.4 for Si and 15. 36 for Ge), (myed/2k3E,)1/2 for the
angular momentum. Everything will be expressed in
these natural units including the time for which
(mged/exZE3)1/2 is the scale,

If x is the Cartesian coordinate in the longitudinal direc-
tion (large mass),y and z the Cartesian coordinates in
the transverse plane (small mass), and «, v,w the conju-
gate momenta, the Hamiltonian is given by
Wt w?
2u 2v 2v
where u = (m,/my)1/2 and v = (m,/my)1/2 so that
#>vand pv = 1, The Hamiltonian has a constant value
along any particular trajectory which is called — §/2
so that the energy has the value — §E in ordinary units.

(02 + 2 + 22)1/2, 1

Instead of the Cartesian coordinates and the linear
momenta, it is sometimes helpful to work with angular
coordinates and angular momenta. For reasons which
will become obvious later on, it seems advantageous to
use angular coordinates in momentum space. Therefore,
we write

u =V ex cosd,
v =VU ex sind cosg, (2)
w =+Yvex sins sing,

where — 0 < x< 0,0 =9 =7,0=< ¢ < 27. The angular
momenta L,M,and N are related to the Cartesian coor-
dinates by

Vi x = (— L sind + N coss) e,

YV y = (L cosd cosy — M(sing/sins) + N sind cosg) ex ,
vz = (L cos# sing + M(cose/sin#) + N sind sing) e .

The canonical equations of motion are preserved be-
cause

xdu+ydv+zdw=Lds+Mdy +Ndy, (4)
and the new Hamiltonian is given by

%ezx - (eX/R)’ (5)
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where for R = v eX and 72 = x2 + 2 + 22 one finds the
expression

R2 = L2(u cos28 + v sin248) + 2(u~ v) sind cosd LN
+ N2(v cos2d + u sin2d) + u(M2/sin28), (6)
It is worth noting that L,M,and N are easily expressed

in terms of the Cartesian coordinates and the linear
momenta, namely

L =vu(yv + zw)/(v2 + w2)1/2 — uxVo? + w2,
M=vz—-uy, (7)
N =ux + vy + wz.

Since ¢ does not occur in the new Hamiltonian, the angu-
lar momentum M is a constant of motion, It is tempting
to reduce the problem to one degree of freedom using x
as independent variable, In order to do so we shall use
the abbreviations

e = {1 cos24 + v sin2¢,
f = (¢ — v) sind coss, (8)
g = v cos2d + p siny,

From the conservation of energy we get

R2 =eL? + 2fLN + gN2 +  M2/sin24 = [2eX /(8 + €2X)]2,
9)

N can now be considered as the reduced Hamiltonian
which depends on the two conjugate variables 4 and L,

and on the independent variable x. The equations of
motion are

L N ds_ N
dy 99 ’ dy oL
The corresponding Langrangian A as a function of

¢4 = d#/dy, $,and x results by eliminating L in the ex-
pression

(10)

A=LP 4N (11)
dx
with the help of the second equation of motion. Thus, we
obtain the expression

A= Zex 2 _ uMZ 1/2
& + e2x sin2s

. _ i 92)1/2 N ) 12
(e — 2f3 + gv2) sgn(@_f‘é (12)

The last factor in A is really of no interest because it
has no effect on the equations of motion. Obviously, Ady
looks like the element of length in a Riemannian space
of coordinates x and .

The Riemannian metric Ady is quite different from the
on€ which is ordinarily associated with a mechanical
system. In the present case, there is a direct connec-
tion between momentum space and the coordinates y
and 4, not between position space and the Riemannian
coordinates as usual. Whenever the bound states of a
mechanical system are discussed, it seems much more
informative to study momentum space provided the
potential has a Coulomb type singularity. The trajec-
tories in momentum space connect any given initial
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momentum with any final momentum, whereas such a
proposition does not, in general, hold for position space
and negative energies. Consequently, it appears intui-
tively easier to find an immersion (if not an imbedding)
of the above Riemannian space in a three-dimensional
Euclidean space. Such an immersion will be construc-
ted in the next section. It corresponds to the well-known
stereographic projection of the momentum space in the
ordinary Kepler problem onto the sphere. In this man-
ner, one gains a more direct picture of the intricacies
that come with the anisotropic Kepler problem.

MOMENTUM SPACE AS RIEMANNIAN SURFACE

The Riemannian space associated with momentum space
can be obtained more directly by considering the virial
along some trajectory,i.e.,the integral over the expres-
sion (4) between some initial and final momenta. With
the equations
du_ %
dt s’
one finds that

’

it 3 at r3’

vy dw_ z (13)

— f(xdu + ydv + zdw) = fr(duz + dv? + dw2)1/2,  (14)

because the vectors (x,y,z) and (du,dv,dw) are parallel,
Since the Hamiltonian (1) has the constant value — §/2,
the radius 7 can be expressed in terms of u, v,and w.
Thus, we find for the virial the expression

Zf[é; + @2/u) + (v2/v) + W2/v)]L (du2 + do2 + dwz)lfz).

(15
it should be noted that for a closed orbit the virial is
equal to the action integral f (udx + vdy + wdz), By a
straightforward calculation it follows that the equations
for the geodesics in the Riemannian space with metric
(15) are the same as the equations of motion which re-
sult from the Hamiltonian (1). The length of a geodesic
equals the value of the virial between the corresponding
endpoints in the anisotropic Kepler problem, For a
closed geodesic the length equals the action integral
around the corresponding periodic orbit.

If the polar coordinates (2) are used, the element of
length becomes

(é’ zexz )2 (edy? — 2fdyds + gds? + v sin2sdg?)  (16)
+ e<x

with the abbreviations (8). For any subspace with

do = 0,e.g.,2 = 0,this metric coincides with (12) pro-
vided M = 0. Since the present report is concerned with
the two-dimensional anisotropic Kepler problem,all
further calculations will be restricted to d¢ = 0, or,
equivalently,z = 0,M = 0.

Instead of the metric (16) in a plane with polar coordi-
nates y and #, one can think of it as attached to a sphere
in three-dimensional Euclidean space with coordinates
£,m,¢. The mapping from the plane onto the sphere is
given by the formulas

X ex
2e cosd, 1 = _ e

T8+ e2x & + e2x

— (17)
The radius of the sphere is 1/V§, and its natural metric
(induced by the Euclidean metric in §,7,%) is

[2ex /8 + e2x)]2 (dx2 + ds2), (18)
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corresponding to (16) when = v = 1,

Consider now two pencils of planes in the Euclidean
space (£,7,8). The first consists of all planes through
the straight line 7 = 0, £ = 1/V§;the second consists

of all planes through ¢ = 0, { = 1/¥§. Each plane in the
first pencil can be characterized by the angle « it
makes with the { axis, where @ > 0 if the plane inter-
sects the positive 1 axis. Similarly, 8 measures the
angle between a plane in the second pencil and the
axis, where 3> 0 if the plane intersects the positive

¢ axis. The equations for the first pencil are

7 cosa + ¢ sina = sina/NE, —in<a< in, (19)

and for the second pencil one has

£ cosB + € sinp = sinB/VE, —ir<p<im. (20
The angles @ and 8 can be used as coordinates on the
sphere given by (17). The transformation from the co-
ordinates x and ¢ to the coordinates a and g follows
from the formulas
tana = (6)"1/2 ex sing, tanf = (8)1/2 ex coss,  (21)
After some straightforward calculations the element of
length (16) with d¢ = 0 becomes

2 2 2
: 2 p A 4y ) )
& \1 + tan2¢ + tan2p costa cos4p

and the element (18) differs only by having effectively
L=V= 1.

The lines of constant o or constant 8 on the sphere are
the intersections between the sphere and the corres-
ponding plane in one of the two pencils. If one meas-
ures the distance between two planes in the same pencil
by integrating the element (22),the distance between
two B planes comes out larger than the distance be-
tween the two @ planes with the same values of the
angles, because p> v, The idea is, therefore, simply

to open up the angles between the planes in the 8 pencil.

Let us, therefore, rotate the points in one of the planes
of the 8 pencil by the angle {y — B) around the axis of
the pencil, i.e.,the line £ = 0,¢ = 1/V§. The value of y
as a function of 8 has to be determined later. The trans-
formation of the points in the Euclidean space is given
by the formulas

£ = £ cos(y — B) +((8)V/2 — ¥) sin(y — ), 7' =n,

(8y1/2 — ¢ =— & sin(y — B) + (8)71/2 cos(y — B),
(23)
provided £ and { satisfy Eq. (20) of the 8 plane. We can
combine (17) and (21) to describe the points which are
simultaneously on the sphere of radius 1/Y§ and the B

plane,
&
'5, B _!‘: — g = .__.__2_/‘/_—.__.____._
vé 1 + tan2a + tan28
The new surface in Euclidean space is given by
P | , 2/V8 si cos
&g, =-—-t)= / Y ,tana, y)'
vé 1 + tan2¢ + tan2B \cosB cosp
(2%)

(tang, tana, 1). (24)

Its natural metric is given by
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1 2 2
’ ’ 12 = =
dg'2 +dn'? + dg é <1 + tan2a + tan23>
2
. (26)
i

da? 2 [\ 2 . onl dB
ks R
X {cos‘la * [cos B(dB) sinp cost

This agrees with (22) up to a factor v if ¥ is chosen such
that

2
s (d_v> #oinzp= =l 2, (2m)
ag

14 le

The solution of this first-order equation for y as func-
tion of g with y = 0 for B8 = 0 gives the required angle y
for the transformation (23) of the sphere with radius
1INE.

The differential equation (27) can be integrated without
difficulty, and yields

8 s dg . {sinB
— 2 2p)1/2 _=F =
Y = fo (p sin2B) cosp arcsm( m )

2 _ sin2B)1/2 + (u2 — 1)1/2 sing
1L cosB )

+ (12 — 1)1/2 log <(“

(28)

In spite of its appearance,the last term is antisymmet-
ric in 8 so that y(— B) = — v(B).

Each line of constant 8 on the surface (25) in three-
dimensional Euclidean space is a circle of radius
cosB/VE which is tangent to the line £ = 0, £ = 1/V8.
Its diameter in the (£’,¢’) plane makes an angle y with
the negative ¢ axis. If one plots the endpoints of these
diameters as a function of y in a polar diagram, he gets
the crossections of the surface in the (£/,¢’) plane. The
result is a double snail. As § increases from 0 to 7/2,
the diameter goes to zero, but the angle y goes to infin-
ity logarithmically as is obvious from (28). The figure
is symmetric with respect to the { axis, and the two
halves cut into each other. Thus, only one half of the
Riemannian space with metric (22) can be imbedded in
a three-dimensional Euclidean space. When the two
halves are glued together one has only an immersion.
The cross section of the logarithmic double snail is
plotted in Fig.1 for u2 = 5. Each half resembles the
Nautilus shell of New Guinea (Nautilus pompilius) of
which a photograph is presented in Fig. 2.

THE TRAJECTORIES FOR ZERO ENERGY

The behavior of the trajectories in the neighborhood of
the origin is obviously important for the understanding
of the particle motion in the anisotropic Kepler prob-
lem. It would, of course, be desirable to regularize the
equations of motion in the event of a collision or near-
collision; but it is doubtful whether such a procedure is
possible. On the other hand, it is reasonable to assume
that the behavior of the trajectories near collision is
independent of the energy, because both kinetic and
potential energy are large compared to the total energy.
Thus, we can study the case of zero total energy as
typical for all other cases provided the trajectory is
near enough to the origin. In the case of the anisotropic
Kepler problem with vanishing total energy, the equa-
tions of motion can be written as those of an autonomous
system with one degree of freedom, i.e., they are equi-
valent with a (time-independent) vector field in two di-
mensions. Such a system can be discussed completely.
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The discussion starts with Egs. (10) where N is defined
by (9) as a function of L,#,and x with M = 0, Introduce
the quantities

& + e2x

2
_E+ex L, v=2T¢"N, (29)
2ex 2ex

so that one has the relation

4

€62 + 210 + g¥2 = 1, (30)

The quantity ¥ depends only on 6 and 4, not on x. The
equations of motion (10) can now be written as

2X
-d—ezﬂ'l'——ex 89 @z—ﬂ

, (31)
dy 9% e2x+§ dx a6

FIG.1. Cross section through the “double snail” given by formula (28)
with u2 = 5 = m;/m,, 1.e., silicon, Above each radius one has to draw
a circle normal to the plane of the paper to get the two-dimensional
surface in three-dimensional space.

FIG.2. Sketch of the
Nautilus shell (Nautilus
pompilius) from New
Guinea, It can be
thought as one half of
the “double snail”
whose cross section is
shown in Fig. 1, except
that the shell corres-
ponds rather to a mass
ratio u2 =20=m,/m,,
i.e., germanium.
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Since the kinetic energy is given by $ e2x according to
(2), and the total energy by — §/2, the equations can be
directly expanded in powers of the ratio of the latter to
the former. Retaining only the first term in such an
expansion, the equations of motion become

de _o¥ ds v

— = — 4+ —— T —

dy 998 Tody 90’ (32)
which is an autonomous system in two dimensions.

If ¥ is computed from (30), there is an ambiguity be-
cause one has to solve a quadratic equation. This is
easily explained as follows. The angle ¢ determines
the direction motion as can be seen from (2), whereas 6
together with x determines the angular momentum L
(as always we assume ¢ = 0,z = 0,w = 0). But the two
together do not indicate whether the particle is approach-
ing the origin or going away from it. On the other hand,
it follows from the equations of motion (13) and the con-
servation of energy that
i(xu +yv+zw)=—§ +u_2 +g§+v_2’
at 2 20 2v 2
from which one usually derives the virial theorem. In
this context one notices that N = xu + yv + zw is always
increasing with time if § = 0. The sign of N, and hence
of ¥, tells whether the particle is coming in or going out.

With the help of (8) one can write the relation (30) as

(33)

(6 cosd + ¥ sind)2 + (0 sind + ¥ coss)2 = 1. (34)

For fixed 4, the values of ¢ and ¥ lie on an ellipse in the
(6,%¥) plane with a semimajor axis of M along the direc-
tion (— sins, coss) and a semiminor axis of Vv along
(cos¥, sing). As # varies, this ellipse rotates, In a three-
dimensional space of Cartesian axes with labels ¢, 9,

and ¥, all these ellipses together form a surface which
is topologically equivalent to a cylinder. However, since
4 is an angular variable which is limited to 27,the two
ends of the cylinder at 0 and 27 have to be identified.

A surface results which is topologically like a torus.

The differential equations (32) together with

av 0¥ do 0% av _ , 3% (35)
dy 20 dy 3¢ ds 29
form a vector field on the torus, whereas Egs. (32) alone

are the projections of this vectorfield onto the (¢, 8)
plane. They result from writing

=2 [ 70+ Mg — 62)2), (36)

where A = 1 for the projection from above the (¢, 6)
plane,and A = — 1 from below. The variable ¢ has to

lie inside the strip which is defined by 0 = % \/fg@). The
right-hand sides of (32) are finite inside, but become
infinite at the boundary. The reason can be checked as
follows. The independent variable x goes through a
maximum as the trajectory comes closest to the origin
of the (x,v) plane; but neither the angle ¢ nor the angular
momentum L, i.e., 6,has an extremum there. Thus,
when 6 goes to Vg, the vector field (32) becomes singu-
lar only because of the peculiar behavior of x. However,
in an autonomous system of differential equations the
independent variable does not matter for the construc-
tion of the trajectories. As the projection of the trajec-
tory from the torus onto the (¢, 8) plane reaches the
boundary, one has to change the value of A from + 1 to
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— 1 according as the trajectory passes from the upper
to the lower part of the torus, or vice versa. As a
simple rule of operation one can always use the fact
that the angle ¢ changes monotonically and continuously
while this happens.

The projection of the vector field from the upper part
of the torus (A = 1) is simply related to the projection
from the lower part (A =—1). Suppose the two compo-
nents of the projection A = 1 into the (4, 0) plane are
known for all points with 2 < g(#). The 4 component
for A = — 1 at (¢, 6) is the same as the ¢ component for
A =1 at (#,—6), whereas the 6 component changes its
sign. In other words, the projection A = — 1 results
from the projection A = 1 by reflecting both the points
in the (4, 6) plane and the vector components on each
point on the #-axis.

Finally, it is possible to work with only one projection,
say A = 1, and make the following rule in agreement
with the above arguments: Whenever the trajectory
reaches one of the boundaries 6 = +vVg(#), it jumps to
the opposite boundary and proceeds with the opposite
sign for 6, while keeping the value for #.

With these technicalities out of the way, it is now rela-
tively easy to get an explicit picture of the vector field
(32) by studying its singularities. A straightforward
calculation shows that they occur only at the points
$=0,3m,m, 57 with 6 = 0. Since e,f,and g have a
period of 7,the singularity at # = 0 is the same as the
one at ¢ = 7, and the singularities at 4 =  and at

¢ = i are identical.

The linear part of Eqs.(32) near ¢ = 0,8 = 0 is given

by
das/ax\  [(u—v Ve > ' <.9>
(dﬂ/dx>_ #(_ \/ﬁ(p. —v) —u+2p 0 37

The eigenvalues of the matrix are
A=3[+1=(9—8u2)1/2), (38)

In the typical case, such as 2 = 5, one has complex
values for A with the imaginary part larger than the
real part. The resulting spiral is quite elongated with
the long axis lying in the second and fourth quadrant of
the (¢, 0) plane. The counterclockwise motion goes in-
ward.

The linear part of Egs.(32) near ¢ = 37,0 = 0 is given
by

ds/dy — v yv $— 37
=V * ’ (39)
ds/dy Vv —v) 2u—v 6
where the eigenvalues of the matrix
=3 +1x (9— 8p2)1/2 (40)

are now always real because v2 = u~2 < 1. The result-
ing “saddle point” has one axis in the first and third
quadrant almost parallel to the 6 axis,while the other
axis is in the second and fourth quadrant of the (¢ —7/2,
6) plane,almost parallel to the 4 axis. The latter join
the inward motion of the spirals on either side, while
the former go to the boundaries 6 = +vjg. A sketch of
the resulting trajectories is shown in Fig, 3.

When u2 < 2 the spirals at ¢ = 0 and 7 lose their twist,
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and the inward trajectories become tangent to an axis
in the first and third quadrant which becomes the 4 axis
as w2 approaches 1.

Since N always increases as time proceeds, ¥ goes
through zero only once along any trajectory. The points
where ¥ = 0 serve, therefore,as convenient starting
points. They are given by

6 =xsgnf[g/(1+ f2)]/2 (41)

according to (36). The projection of the vector field
onto the (¢, 8) plane is never tangent to the line (41) ex-
cept at ¢ = 0,7/2, 7, etc.

1t is sufficient to investigate what happens for starting
points in the domain 0 < ¢4 =< 37 and 6 > 0,i.e., A =1
(projection from above). If ¢ increases, one is led al-
most immediately to the boundary of the projection at
8 = Vg, and from there into the projection X = — 1. The
trajectories then go into the neighborhood of the saddle
point, and end up in one of the spirals,at 4 = 0 or at

4 =7, If 4 decreases, one always ends up at the spiral
near ¢ = 0, The only complication arises for small
initial values of ¢ > 0, because the trajectory hits the
boundary of the projection x = 1 for # < 0. Thus, one
has to spend a little time in the projection A = — 1 be-
fore getting back into the projection A = 1 and proceed-
ing into the spiral near ¢ = 0.

In view of formulas (2) the whole discussion in this sec-
tion effectively describes the trajectory in momentum
space. One has only to remember that x goes to zero

as the trajectory goes into the spiral, either in the for-
ward direction (A\ = 1) or the backward direction A =—1).
The behavior of the trajectory in position space is more
revealing, however, and it can be obtained with the help
of formulas (3). If we combine (3) and (29) with § = 0,
we find that

Vi x = 2(~ 6 sing + ¥ coss) e2x,

42
Vv y = 2(6 coss + ¥ sins) e2x, (42)

where we can insert the results of integrating the linear
differential equations (37) together with (36).

As the spirals at either end of the trajectory are ap-
proached, the absolute values of both x and v go to «,but
the ratio y /x goes to zero. Thus, the trajectory in posi-
tion space goes to infinity along the x axis by oscillating
around it with increasing amplitude. According to the
exact phase of this oscillation the trajectory will come
in from one side of the x axis and go back out either on
the same side or on the opposite. The critical phase
obviously is the one where the trajectory hits the saddle
point. Since the saddle point is at 4 = 7/2 or — 7/2, and
since x increases indefinitely as the saddle point is
approached, the critical trajectory not only leads to col-
lision, but the collision occurs only when the trajectory
approaches the origin along the y axis.

This last discussion should make it very evident that
the trajectories in the anisotropic Kepler problem are
quite different from what they are in the usual isotropic
situation.

TRAJECTORIES PERPENDICULAR TO THE X AXIS

The present section is entirely heuristic; but the re-
sults, if correct, are interesting enough to be discussed
even on the basis of empirical rather than purely logical
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evidence. Also, it seems more convincing to present the
evidence in the order in which it arose, with the inter-
pretation given at the end. There are obviously many
lemmas and proofs missing, and the final conclusion is
not watertight.

The ultimate goal is the construction of a Poincaré map
for the anisotropic Kepler problem with negative energy.
To recapitulate the general idea, let g, and ¢, be the
coordinates, p; and p, the conjugate momenta, and
H(p by, d5) the Hamiltonian. If the energy is fixed at
E the initial conditions for any trajectory can be chosen
as ¢4 and p, with ¢, = 0 and p, > 0. The condition

H = E defines a domain D in the (g, ) plane, each point
of which defines a trajectory. This trajectory is fol-
lowed forward in time until one finds again ¢, = 0 and
po > 0. Thus, the initial point in D is mapped into some
other point of D. This map is one-to-one, continuous,
and area-preserving.? The periodic orbits are simply
fix points of some iterate of this Poincaré map. In addi-
tion, one hopes to find some relation between the values
of g, and p, on one hand, and the shape of the trajectory
on the other.

In the case of the anisotropic Kepler problem with nega-
tive energy, the choice of p, and ¢, is fairly obvious. In
terms of the Hamiltonian (1) one chooses p, = u,q; =x,
py, =v>0,and g, =y = 0. The reason is the following
lemma: Between any two crossings of the y axis, each
trajectory crosses the x axis at least once.

Proof: Assume some trajectory which crosses the
y axis twice without crossing the x axis. It is then pos-
sible to find a point on the trajectory between the two
y axis crossings, such that the tangent to the trajectory
at that point goes through the origin, and the curvature
(and, therefore, the acceleration) is away from the x axis,
However, since the force is directed toward the origin,
and the anisotropic masses are such as to enhance the
acceleration in the y direction, one has a contradiction,
Thus, the trajectories cross the x axis more often than
the y axis.

The domain D is defined by the inequality

2 2
’_‘____1,2_.‘(’_,_”_5_.‘(’_‘_ (43)
2w« 2 2 2
The shape of D in the (x, #) plane can be more easily
visualized from the identical condition

FIG. 3. Tangent curves for the vector field (31) with A = 1, When one
of the curves reaches a boundary, one has to continue on the opposite
boundary with ¢ continuing monotonically.
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2

m , (44)

lx]| =<

where u stretches from — « to + ©, For plotting, it is
better to have finite dimensions for D by mapping it in-
to a (X, U) plane with the formulas

X =x[6 +2/p)], U= (u/8)1/2 arctan[u/(u8)1/2],

(45)

which preserves the area, (44) now becomes | X| =< 2
with | U| < (4/8)V/2 (n/2).

It is reasonable to ask first whether any orbit of the
usual Kepler problem stays periodic even after intro-
ducing the anisotropic masses. According to Reeb and
Moser, the perturbation part of the Hamiltonian has to
be integrated around an ordinary Kepler orbit.5 The
particular orbits for which the value of this integral

is stationary in the manifold of all orbits, remain perio-
dic in the perturbed system. A simple calculation
shows that only the circular orbit is of this kind. The
resulting periodic orbit of the anisotropic Kepler prob-
lem is just the one which was discussed in the previous
paper. It will be called the pseudo-circular orbit from
now on, It looks roughly like an ellipse with the long
axis in the y direction. It intersects both x and y axes
perpendicularly. It was found for finite anisotropy ex-
actly as Hill's variation orbit in the theory of moon, by
Fourier expansion.

As a first step toward finding other periodic orbits, one
can try to get at least the ones which intersect the x
axis perpendicularly. In order to accomplish this, one

u
T/ e

XRR=N

FIG.4. Third iterate of the Poincaré map from the interval (0.25, 1, 10)
along the X axis into the (X, U) plane. Each curve is identified by the
binary sequence corresponding to the consecutive intersections of its
trajectory with the x axis. (Mass ratio p2 = 5 = m,/my,).
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chooses initial conditions with ¥ = 0,y = 0,2 > 0 and
lets x vary between — 2 and 2. (The energy 8 will be
assumed henceforth to equal 1. The case § = 1 can be
reduced to § = 1 by scaling the coordinates with & and
the momenta with 1//'8.) If it is possible to find some
initial value x such that at some later crossing of the
x axis one has again « = 0,a periodic orbit results
from mirroring the trajectory on the x axis. This is,
of course, the reasoning which Hill applied originally
to find a periodic variation orbit in the restricted three-
body problem.

Al] the following calculations were done by integrating
the equations of motion in Cartesian coordinates with
the help of a standard fourth-order Runge-Kutta
method. The initial value of x (together withu = 0,

y = 0,and v> 0) was changed in sufficiently small
steps, starting with the value for the pseudo-circular
orbit. The integration for each initial x was stopped
as soon as the trajectory had crossed the x axis a cer-
tain number of times. The consecutive crossings can
be numbered, with odd number when v <0, and even
numbers when v > 0. In this manner a sequence (x, 0),
(¥4,4,),(xy,u5), - - - is obtained where the even numbered
terms are just the consecutive iterates of the Poincaré
map for (xg, 0).

As x, varies, the points (x,,,) for fixed » in the (x, )
plane, or (X, U, ) in the (X, U) plane, run through a set
of relatively smooth curves which will now be described
in detail. Since the first task is to find initial values x,,
such that #, = 0, one is looking for the intersections of
these curves with the x, axis. It is,therefore, a great
relief to find the validity of the following.

Proposition 1: As x increases,u, always increases.
Actually, u, goes to +w, jumps to — w0, and increases back
upto +, jumps againto —w, etc, Accordingto (45), U, in-
creases to vu(n/2), jumps to — Vu(n/2), and increases
back up to Vu(7/2), jumps again to — V(n/2), etc. 1t is,
therefore, quite easy to find as many values of x, where
u, vanishes, as there are curves in the (X, U) plane
which go from U = —Ju(7/2) to U = + Y (n/2).

These curves in the (X, U) plane do not intersect one
another. Otherwise one would have some particular
values X, and U, which lead to different values of x,
upon integrating the corresponding trajectory backward
in time, starting with x,,,u,,y = 0,v % 0. Each curve
stays entirely in one half-plane, either X > 0 or X< 0,
It starts either with 0< X<1 or with — 2<X< — 1 at
U = — Yu(n/2),and it ends either with 1< X < 2 or with
— 1< X< 0at U =Vu(n/2). X increases while U in-
creases, over most of the domain D in the (X, U) plane,
This last statement fails in the corners (— 2,— vu(1/2)),
(0, + Vu(n/2), (+ 0,— Vu(n/2)), (2, (1/2)), especially
when p is near 1. It is not needed for the further argu-
ments, but it helps to visualize the curves, An example
is given in Fig.4 for m; = 5m,, i.e., silicon.

To each curve in the (X, U) plane corresponds a (rela-
tively short) interval on the X axis, i.e.,the set of

values x, which served as initial conditions. At first
sight, it is absolutely not clear in which way the curves
are ordered, Most emphatically, the curves in the (X, U)
plane do not arise in the order of the intervals for x
out of which they come. There is, however, a surprising-
ly simple principle to explain the ordering of these
curves and to relate it to the values of x,. In order to
understand this principle, one has to look more closely
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at the shapes of the trajectories in the (x,y) plane as
the initial coordinate x, varies. In particular, one has
to examine what happens when the trajectory describes
a collision of the particle with the origin.

Each trajectory which has been investigated so far
(xg, o = 0,99 =0, v4 > 0) can be described by a se-
quence of binary characteristics (byb,b,---b,) where
b, = sgn(xj). The pseudo-circular orbit starting with
%> 0 has the alternating sequence (+ — + - -- (— D)»),
As x varies there are certain critical values of x,
where some of the characteristics change. At such a
critical value of x, there is always a lowest index %
such that b, changes, but not bj for j < k. The corres-
ponding curve in the (X, U,) plane reaches the boundary
U, = +Vi(n/2), but none of the U; with j < k do; on the
other hand, all U; with j > k also reach the boundary

+ Ju(w/2). Obviously, the kth crossing of the x axis
leads to a collision, but none of the earlier ones do.
The question is: How do all the later crossings (j > &)
behave, as the kth crossing (but none of the earlier)
sweeps through the collision with the origin? The ans-
were is contained in the following.

Proposition 2: If the collision is swept over with
increasing x, the characteristic b, always goes from
~— to +, and the characteristics b; with j > & simultan-
eously go from + to —. In other words, as the kth cross-
ing (but no earlier one) reaches a collision with x, in-
creasing, it does so by having x, approach 0 from below.
Also, the trajectory just before the kth crossing is
nearly perpendicular to the x axis and stays that way as
xy goes beyond the critical value. Meanwhile, all the
later crossings occur with x; > 0 for xy below the criti-
cal value, and switch simultaneously to x; < 0 above.
No exception to this proposition has been found in exten-
sive computations.

Before presenting the mathematical (rather than numeri-
cal) arguments in favor of the last proposition, let us
look at the immediate consequences. It should be re-
marked that as x, approaches the critical value from
below, all U, with j = k approach Vi (m/2) from below;
and as x, approaches the critical value from above, all
U; with j = k approach — Vu(n/2) from above. There-
fore, each continuous piece of curve in the (X,,U,) plane
has a unique sequence of binary characteristics, particu-
larly its intersection with the X, axis which gives rise
to a periodic orbit.

Consider now for example the case n = 6, i.e.,the third
iterate of the Poincaré map. Start with the pseudo-
circular orbit, i.e., the binary sequence (+ — + — + — +),
As x increases, the first time a collision occurs is at
the fifth crossing. The new sequence is (+—+— ++ —).
The next collision happens at the sixth crossing, giving
the new sequence (+ — + — +++). The next collision
comes at the third crossing, yielding the new sequence
(+ — ++ ——). And so forth. Each new sequence gives
a trajectory for which U, = 0. If we associate a binary
number with each sequence by writing

B, = ZZ) b; Y, (46)

B, is obviously a monotonically increasing function of
xgo. All 2#*1 bipary rationals B, from — 2 to + 2 actually
occur, each exactly once as x, varies from — 2 to + 2.
Thus, we find exactly as many periodic orbits which are
symmetric with respect to the x axis, for each value of
n=1,
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Binary sequences of identical length and their periodic
orbits have been ordered so far. But it is not clear how
the initial value x,, for a periodic orbit with binary
rational B, , and another periodic orbit with binary
rational B,, and initialx , ,are ordered with respect

to each other if » < m. The rule is quite simple: Since
the nth crossing of the first and the mth crossing of

the second orbit have zero momentum in the x direction,
both orbits and their associated binary sequences can
be continued without further calculation. If / is the least
common multiple of » and m, the Ith crossing for both
has again a vanishing momentum in the x direction.
Therefore, the two orbits are now described by a binary
rational of identical length which tells us immediately
whether x,, is smaller thanx . or vice versa.

A trajectory which starts with 4, = 0 and has a later
crossing, say the nth, with u, = 0, should really be
assigned an infinite binary number by extending the
binary sequence (b, - - b,) beyond n. The procedure is
simply to define b,,; = b,_; which extends the sequence
to b,,. Then one defines b,,.; = b,,; which extends
the sequence to &,, and so forth. Thus, one gets the
binary number

o0
0
to be associated with a trajectory which cuts the x axis

perpendicularly at least twice. B is a monotonically in-
creasing function of the initial value x, of those orbits.

(47

Since B was obtained by expanding a finite binary se-
quence as explained in the previous paragraph, not all
real numbers between — 2 and + 2 can be obtained in
such a manner. However, the special numbers B form
a dense set in the interval (— 2, 2). Therefore,the map
from x, to B can be defined for all values of x, and
remains, of course, monotonically increasing.

With the help of this map one can describe what happens
as the anisotropy of the masses changes with the limit-
ed class of periodic orbits which intersect the x axis
perpendicularly. The initial value x,, for the pseudo-
circular orbit is always mapped into B = £, In the
limit of isotropic masses this particular value x,, goes
to 1, whereas for m,; = 5m, one has x,, = + .49 754.
As x, moves away from x,,, B moves away from = 3.
But the rate at which B moves with respect to x, in-
creases very strongly as the anisotropy increases. In
fact, this rate drops to zero when the anisotropy vanishes
because in the ordinary Kepler problem all trajectories
are periodic and have an alternating binary sequence.

1t is as if the periodic orbits with B = + % are pushed
out of the x axis when the anistropy decreases. Their
initial values x, are crowded more and more toward
the ends of the intervals (— 2,0) and (0, 2).

All the various statements in this section should be cor-
roborated by mathematical deduction from the original
equations of motion. But very little progress has been
made along this line. Only some qualitative arguments
can be made on the basis of what was shown in the pre-
vious paper and the preceding sections.

One obvious remark has to do with the stability of the
pseudo-circular orbit. It was shown in the previous
paper to be unstable and to have two conjugate points.
From this one can conclude at once that as x, increases
beyond x,(, any one intersection x, also increases. For
evenn and xy, > 0,therefore,x, moves to the right of
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¥go and xo, whereas for oddn it moves toward the ori-
gin. Thus, the odd intersections x, lead to a collision
before the even x,,; does. But that explains only the
very first change in a binary sequence starting with the
alternating sequence.

The other remark refers to the preceding section, which
was written mostly to provide some insight into the col-
lision process. If one starts with a trajectory (§ = 0)
and modifies it so as to make it go through one of the
saddle points, firstly the approach always goes along the
v axis, and secondly, the sign of all intersections with
the x axis after the collision changes simultaneously.
Therefore, the case § = 0 is consistent with the cases

§ > 0. But, that still does not explain all the other rela-
tively simple features which were observed when & > 0
and which allow such a detailed and, to a certain extent,
exhaustive description of the trajectories.

NATURAL COORDINATES FOR THE POINCARE MAP

All those periodic orbits which cut the x axis twice with
vanishing momentum in the x direction, were effectively
enumerated in the preceding section. Also,the enumer-
ating scheme is such as to determine the value x of
the x coordinate where the periodic orbit intersects the
x axis perpendicularly. The immediate problem now is
to generalize this method for the anisotropic Kepler
problem so as to cover all trajectories. Or in other
words, is it possible to extend the mapping from x, to
B which was discussed in the preceding section from
the x axis to the whole domain D of the (X, U) plane ?
The affirmative answer will be presented in this sec-
tion.

The curves in the (X, U) plane which were discussed in
the preceding section, and sketched in Fig. 4, give the
3nth iteration of the Poincaré map from the X axis into
the (X, U) plane. Because of the symmetry with respect
to time of the equations of motion, one can also consider
the X axis as the image of the curves in the (X, U) plane
under the 3 n-times iterated Poincaré map. More pre-
cisely, if a trajectory starting with the initial conditions
x =xg,u =0,y = 0,and v> 0 leads to the sequence

2 T

-
-2 -1 | | a

| 2
-1
-2

FIG. 5. Domain of the two real numbers o and 8 given by (48) which
characterize the binary sequence (--- a_,aqa, -« -) of any trajectory.
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(*g,0), (xy,u4),...,(x,,u,) of intersections with the »
axis, then a trajectory with the initial conditions x = X,,
u=-—u,y = 0,and v> 0, leads to the sequence (x,,—u,),
(15— Up-g), oo oy (0y,— 1), (x5, 0) of intersections with
the x axis,

Each trajectory with initial conditions x = x4, u = u,,

¥y = 0,and v> 0 can be assigned an infinite sequence of
crossings with the x axis - -« (x_;,u_4), (xg, %), (¥;,u,),
(x4,u5) - - - where the odd indices correspond to cross-
ings with ¥ < 0 and the even ones to those with v> 0.
Also, positive indices correspond to crossing for ¢ > 0,
while negative indices correspond to ¢ < 0. Again, there
is an infinite sequence of binary characteristics -- -,
a.1,89,81,8,, -, Where a; = sgn(x;). Two real num-
bers, @ and 8, can be defined by

a=2; a,3), B=2 a,})r, (48)
0 0

whose domain is given by the union of the two squares
(0<a<2,0<B<2) and (— 2< @< 0,—~ 2 <8< 0)shown
in Fig.5.

A trajectory with binary characteristics (b b, -+« b,)
in the preceding section can now be viewed as a trajec-
tory starting withx =x,,u = u,,y = 0,and v> 0, whose
binary characteristics are known backward in time,

- = b, for 0 = j = n. Actually,the a's are known
even further back because one knows that u., =0 8o
thata_,.; = a_,,; for 0 = ¢ =n, Therefore,the curves
in the (X, U) plane which were discussed in the preced-
ing section and are sketched in Fig. 4, correspond to
trajectories for which 8 is defined within the rather
narrow bounds i (3)22. Viewed from this angle one
notices a very striking feature which is described in
the following:

Proposition 3: The domain D in the (X, U) plane is
covered with a set of nonintersecting curves, each going
from the lower boundary U = — Vu(r/2) to the upper
boundary U = + vu(7/2), so that they can be ordered
with respect to their intersection with U = 0. Each of
these curves also has a binary characteristic (a0 Qqe--
a.,),and each point on these curves has a real number
B associated with it where § is known only to the pre-
cision % (3)27, The ordering with respect to 8 is the
same as the ordering with respect to the intersection
with U = 0. Again, no exception to this proposition has
been found in extensive computations.

The initial conditions are, therefore, mapped into the
real numbers 8. The lines of constant 8 are given in
the preceding section as the image of the X axis under
the 3 nth iterate of the Poincaré map. The map from
the initial conditions into g is essentially continuous
(forgetting complications at the boundaries of D).

Because of the symmetry with respect to the x axis we
can associate with a trajectory of binary characteristic
(bgby - -+ b,) in the preceding section, a trajectory whose
initial conditions arex = x,,u =—u,,y = 0,2 > 0.

Such a trajectory is characterized by a; = 5,-; for
0=<j=nanda,,; =b;for0=<i=n. Its associated

real number o is again known with a precision = (3)2#,
Curves of constant o are the same as those of constant
B after reflection on the X axis. Therefore, the above
proposition holds just as well for « as for B.

In conclusion, the real numbers a and 8 provide a coor-
dinate system for the domain D in the manner shown in
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Fig. 6 for m; = 5m,. The mapping from D into the two
squares of Fig.5 can be understood as follows. The X
axis of D goes into the diagonal o = 8 because,if .

u = 0 initially, the sequence of intersections of the tra-
jectory with the x axis is the same going forward and
going backward in time. The upper and lower bounda-
ries of D are mapped into various sides of the two
squares, e.g.,(0< X< 1,U = Vu(n/2)) into (a = 0,
0<Bp<2),(1<X<2,U=vu(r/2)) into (0< &< 2,8=2),
2>X>1,U =~ Vu(r/2)) into (@ = 2,2> 8> 0), etc.
These boundary points correspond to trajectories which
just had a collision or are just getting out of it,i.e.,
where either in the forward or in the backward direc-
tion all intersections with the ¥ axis have the same
sign, while in the opposite direction the trajectory be-
haves quite smoothly and regularly. The vertical boun-
daries of D,i.e., X =— 2,X = 0,and X = 2, are mapped
intothe points a = =—2,a=F=0,anda = =2,

The map from D to {a, 8} has been constructed numeri-
cally, and the procedure demands at this time the ex-
plicit integration of the equations of motion in order to
obtain a grid of approximate curves a = const,or 3 =
const. It is interesting to note that this works better

for large anisotropy which leads to a grid of relatively
even mesh size for short trajectories, i.e., small #,
whereas for small anisotropy the curves of the same
constant value of o or 8 are driven toward the boun-
daries of D, leaving the interior only poorly covered.

BERNOULLI SCHEMES AND PERIODIC ORBITS

Each trajectory in the anisotropic Kepler problem
yields a binary sequence (--- a_;aya, ---),and con-
versely each binary sequence gives rise to two trajec-
tories, as has been shown in the previous section. The
ambivalence comes from the symmetry with respect
to the x axis, unless it is specified that the zero-cross
ing, @y, has a positive momentum in the y direction,

v >0,

Binary sequences form a particularly simple example
of a dynamical system whose basic ingredient is the
tossing of a coin. The binary characteristic a; indi-
cates whether the result of the jth toss was “head” or
“tail.” Each sequence can be considered as an event

FIG. 6. Approximate
coordinate grid in
the (X, U) plane.
Each curve corres-
ponds to @ = const
(curves from upper
left to lower right)
or 8 = const (curves
from lower left to
upper right). The
curves are directly
taken from Fig, 4.
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or a point in a space, and one can define an algebra of
measurable sets in this space. E.g.,the union of the
two squares in formula (48) and in Fig. 5 gives a pic-
ture of this space. There is a natural automorphism
which maps every sequence (--- a_jaga, -+ ) into
another one (- -« a’; aya) - - -) through the formula

a;' = aj+1 ’ (49)

called a shift. The whole thing is called a Bernoulli
scheme.®

The main result of this paper can now be stated as a
theorem (if one is willing to accept the evidence of the
two preceding sections) or, otherwise, as a

Conjecture: There is a one-to-one, continuous map-
ping between the anisotropic Kepler problem and the
binary Bernoulli scheme, such that the Poincaré map
for the (r,u) plane is equivalent to a double shift of the
binary sequences.

The measure which is ordinarily used in the discussion
of Bernoulli schemes, and which corresponds to the pro-
bability of success in tossing a coin, is essentially the
area in Fig.5. A comparison of Figs.5 and 6 makes it
doubtful whether corresponding meshes have equal areas.
Therefore, it looks as if the Poincaré map for the aniso-
tropic Kepler problem yields a measure for the Bernoul-
1li scheme different from the usual one. As a matter of
fact, it appears that each value of the ratio #m,/m,

gives a different measure, which is, however, conserved
in the shift.

As an application of the isomorphism with the Bernoulli
schemes, the set of periodic orbits in the anisotropic
Kepler problem will be discussed in this section. So
far, only those periodic orbits were found which inter-
sect the x axis perpendicularly in two places. Their
binary sequences have an even period 2x# with the addi-
tional symmetry a,,; = a,.; for 0 =j =n. The sequence
is then symmetric with respect to 0,i.e.,a.; = a, for

¢ = 0, so that @ = § correspond to u, = 0. Similarly,
@,.; = a,; for j = 0 so that u, = 0. With the help of the
binary sequences it is now possible to find the answer
to the following kind of question: Are there any periodic
orbits which intersect the x axis perpendicularly in only
one place? Are there any periodic orbits which never
cut the x axis perpendicularly ?

Clearly, a periodic binary sequence gives rise to a
periodic orbit, and vice versa. It is of some interest

to start enumerating the periodic orbits in the order

of the length » of their period in the associated binary
sequence. If » = 1,0ne has eithera = =2o0r a=8=
— 2, and in both cases the corresponding point is not in
the interior of the domain D in the (X, U) plane. If

n = 2, one gets only the alternating sequence and, there-
fore, the pseudo-circular orbit,

The first novel case comes withn = 3 where the only
possibility is (++++ ——+ — — + —— «--) apart from
shifts and overall change in sign. With a;; = + 1 and
az;+1 = G3;+5 = — 1,where ! is any integer, one
finds a3; = B3; = £; a3;41=— 3 and B3,.1 =
—%sand @gp.p = — & and B34 = — o . One is forced to
conclude the existence of a periodic orbit which starts
with u, = 0 and vy > 0 at some well-determined initial
position x,,v, = 0; and which, after two intersections
with the x axis, returns to that same position again with
u = 0, but this time with v < 0. Also, since the « and 8
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values for the two intermediate intersections with the

x axis are symmetric with respect to each other, the
corresponding values of the x coordinate are identical,
while the corresponding values of the # momentum are
opposite. All this is possible only if the particle re-
traces its initial trajectory to the opposite direction.
And that, in turn, requires the trajectory to go to a point
where its kinetic energy vanishes, i.e.,a point on the
boundary x2 + y2 = 4,

With all these indications, it is not hard to find the ex-
act value of x, using the coordinate grid of Fig. 6;then
do the integration numerically to check whether there
is, indeed, a periodic orbit which retraces itself after
three intersections with the x axis. The result is shown

FIG. 7. The periodic orbits in the (x,y) plane corresponding to the
periodic sequences (-+»+ —+ —+ —--.)and (-o + —— + — — +.)L
The former is the pseudo-circular orbit, and the latter is the first
self-retracing orbit which goes up to the limiting circle x2 + v2=4.
(p2 = 5).

FIG. 8. Periodic orbits in the (x,y) plane which correspond to the
periodic sequences (-+-+++—+++—...)and (.o ++t——Fd~—-- R
The former intersects the x axis perpendicularly in two different
places, and the latter intersects only the y axis perpendicularly.
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in Fig.7. Obviously,this is the prototype of a large
class of periodic orbits with an odd period n, such that

a;=a,  for0=j =n.

The existence of these orbits could hardly be under-
stood if there was not the isomorphism with the Ber-
noulli schemes, Without this isomorphism one would
rather believe that an orbit can be found which starts
aty = 0 with # = 0 and v > 0, goes into the negative
half-plane x < 0, cuts the negative x axig at two differ-
ent places, comes back to the positive half-plane x > 0,
and finally intersects the positive x axis perpendicu-
larly, but at a place different from the starting point.
There seems to be more freedom to adjust to the initial
and final condition # = 0 when intersecting the positive
x axis. But the only orbit of this kind turns out to have
the same initial and final point on the x axis.

When n = 4,there are two essentially different cases,
the sequence (+++ +++ —+++ -+ ++—-«.)and
the sequence (+++ + + ——+ +——+ + —— ...), The
first gives a periodic orbit which intersects the x axis
perpendicularly at two different places, once at x > 0
and once at x < 0. The second sequence is of interest
because its associated orbit intersects the y axis per-
pendicularly, but not the x axis. Moreover, the two inter-
sections with the positive x axis have symmetric values
for o and B, as do the two intersections with the nega-
tive ¥ axis. Therefore, one has again a self-retracing
orbit which goes all the way to the boundary x2 + y2 =4,
Its picture is given in Fig. 8.

For a periodn = 5, one finds three different self-re-
tracing periodic orbits all of which intersect the x axis
perpendicularly. For a periodn = 6,there appears a
new orbit of special interest because it intersects
neither the x axis nor the y axis perpendicularly. Its
sequence is (+++ ++ + + ——+ + + + ——...) Ttis
self-tracing and seems to float rather freely in the (x,y)
plane although it hits the boundary x2 +y2 = 4 at two
different points, as shown in Fig.9. Again,one is struck
by the special character of this orbit, and the difficulty
of finding it without the Bernoulli scheme.

The binary sequences provide a natural method of en-
umerating all periodic orbits of the anisotropic Kepler
problem and for ordering them according to their com-
plication. It is satisfying to find the pseudo-circular
orbit to be the first one in this scheme. This is not the
place to indulge in an exhaustive study of all the
various types which arise, as well as the number of
their conjugate points and their stability. But it should
be kept in mind that if the periodic orbits are important
for the quasiclassical response function G(E), a more
complete investigation of their behavior is necessary.

THE BAKER TRANSFORMATION

It was explained in the first section how the classical
approximation G(g”¢q’ E) for the quantum mechanical
Green's function G(9”q’ E) is obtained. Among other
things, one has to find all the classical trajectories
which start at the position ¢’and end at the position

g” while moving with the fixed energy E. The problem
of enumerating all these trajectories is, of course,
even more difficult than finding all the periodic orbits.
However, it will be shown how the binary sequences
give at least a qualitative idea of the solution.

Consider a point (x,y) in the first quadrant,i.e.,x >0
and y > 0, but inside the limiting circle, i.e.,x2 + y2<4.
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All the other cases are either limits of this one, or can
be obtained by reflection on the x axis and/or y axis.
Any trajectory through the point (x,y) has a binary se-
quence associated with it, and there are two real num-
bers to describe this binary sequence. For the purpose
of this section, these two real numbers will be defined
slightly differently.

Let the binary sequence be (-« a_;a5a, - - -} as before,
where a, gives the sign of the first intersection with the
x axis in the forward direction, after the point (x,y) has
been traversed. Since y > 0, the ¥ momentum at this
intersection is negative. Similarly, a_, gives the sign
of the last intersection with the x axis before the point
{(x,y) is reached. The corresponding ¥ momentum is
positive. The binary sequence is completely fixed (ex-
cept where the particle collides with the origin) by the
real numbers
xR0

E=2 a,( =2 a,n
0 1

whose values are in the square — 1<£< 1,— 1< <1.
In terms of the previous notation one has o = 2§ and

B = a, + 1. The advantage of the present notation is
that it clearly distinguishes between the forward and
the backward half of the trajectory in a symmetric
fashion. As long as x = 0, such a distinction cannot be
made in a natural way.

(50)

As the trajectory through the point (x,y) varies its ini-
tial direction, the numbers £ and 7 vary continuously.
The point (§,n) traces a continuous curve in the (§,7)
plane. Several examples are given in Fig, 10. These
curves are symmetric with respect to the diagonal

¢ = 1, and intersect themselves on the diagonal, exactly
once. This last fact is of interest, because it shows that
there is exactly one trajectory through (x,v) which
looks the same in the forward and in the backward
direction. Again this trajectory runs directly from the
point (x,y) to the limiting circle from whence it re-
traces itself. Notice that the point of return lies in the
same half-plane y > 0 as (r,y) itself. Thus, one gets the
somewhat unexpected

Proposition 4: Through each point (x,y) of one quad-
rant there is exactly one trajectory which runs directly
to the limiting circle in the same half-plane with res-
pect to x. These special trajectories do not intersect
one another in that half-plane.

Consider now two different points (x,,y) and (x,,v,),
and let them belong to the same first quadrant for sim-
plicity's sake. Each has its curve in the (£,7) plane.
Wherever these two curves intersect, one has a trajec-
tory which connects them. For instance, if the two
points lie on the same trajectory to the limiting circle,
their curves in the (£,7) plane will have the same point
on the diagonal £ = 7. The trajectories between (xl,yl)
and (x,,v,) which are obtained in this manner, do not
intersect the x axis in the interval between (x,,y) and
(x45,¥,). They are, obviously, the simplest that exist.
How does one get the others?

Let now (£,7) be a trajectory which starts at (x,,y,)
and goes through (x,,y,) after having intersected the

x axis twice. (Clearly, since bothy, > 0 andy, > 0,

one always needs an even number of intersections with
the x axis to get back to the same half-plane.) Viewed
from (x,,y,) its binary sequence would be (--- a_;a,a,
-+-),and viewed from (x,,y,) its binary sequence would

J. Math, Phys., Vol. 14, No. 1, January 1973

be (-« a%jagaj -+ +) where a;, = a,,, for all integer u.

It is not the curve in the (£,7) plane which characterizes
the point (x{,¥), but rather what becomes of it after
two shifts (49),that has to intersect with the curve which
characterizes (x,,y,). Thus, one is led to ask: What be-
comes of any curve in the (£,7) plane if the correspond-
ing binary sequences undergo a shift ?

If (¢',n') are the two real numbers which are associated
with the binary sequence after one shift (49), one finds
immediately from (50) the formulas

& =2t —sgné, N =3[+ sgné). (51)
That is the transformation of the square — 1< {§< + 1,
— 1<n <+ 1 into itself which a baker uses when he

FIG. 9. Periodic orbit in (x,y) plane corresponding to the periodic

sequence (-.- ++++——++++—~— ...}, It intersects neither the
x axis nor the y axis perpendicularly, but it is self-retracing.
n
>~
[
il

FIG.10. Curves in the square — 1< £<1, — 1< 1< 1 which corres-
pond to the positions ¥ = 1.0,y = 1.0 andx = 0.5,y = 0.5. Only from
the latter point are there any trajectories which lead directly to a
collision (§ = 0 or # = 0). The first curve is inverted at the origin.
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rolls out the dough. He pulls the square along the £-axis
by a factor 2, while reducing its thickness by 3,then
cuts the rectangle in two and places the right-hand side
on top of the left-hand side.

The baker transformation is an area-preserving map
which introduces discontinuities by tearing the original
square along the 1 axis, i.e., for trajectories in the
neighborhood of £ = 0. Such a trajectory has either
ay> 0 anda].<0 for > 0 or @, < 0 and ¢; > 0 for j > 0.
The first x crossing in the forward direction happens
to be a collision with the origin in this case. If the
baker transformation is iterated once, new discontinui-
ties will appear which arise for £ = + 3. These trajec-
tories have a collision at their second x crossing in
the forward direction, and so on.”

Also, the baker transformation allows to recognize im-
mediately the stable and the unstable submanifold which
belong to a given periodic orbit. For instance,the
pseudo-circular orbit is represented by the points 3,

— %) and (~ §,3%) in the (¢,7) square. Obviously, any
trajectorywith ¢ =+ % and arbitrary n moves closer to

the pseudo-circular orbit with each baker transformation,
while any trajectory withn = + and arbitrary £ moves
away. Both of these submanifolds are actually larger
because, e.g., the trajectories with § = = 2 and arbitrary

J. Math. Phys., Vol. 14, No. 1, January 1973

77 move into the stable submanifold £ = + 5 after one
transformation. The stable and the unstable manifold

of the pseudo-circular orbit intersect at (3,%) and (— %,
— 3) for the first time, giving rise to a homoclinic point,
i.e.,a trajectory which closes in on the pseudo-circular
orbit both forward and backward in time, without becom-
ing identical to the periodic orbit. In this particular
case, the homoclinic point arises from a self-retracing
trajectory because the sequence of intersections with
the x axis is the same, forward and backward in time,
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Erratum: Analytic treatment of the Coulomb potential in the path integral
formalism by exact summation of a perturbation expansion
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A number of paragraphs in the Introduction of this paper should, in this ordev, come after
have to be interchanged:

The paragraphs 5: “Given this general ...,” W= f exp(—BE)dY

6: “For examples like ...,”

7: “The present paper is divided ...,”
8: “This leads to an expression ...,” “In Appendices A-C ....”
9: “Using Grosjean's theorem ...,”
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{right before the last paragraph of the Introduction):
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